
Chapter 3

Linear transformations

Linear transformations, or linear maps, between vector spaces represent an
important class of functions, in their own right, but also as approximations
of more general nonlinear transformations.

A linear transformation acting on a Euclidian vector can be represented
by a matrix. Many of the concepts we introduce in this chapter generalize
to linear transformations acting on functions in infinite dimensional spaces,
for example integral and di↵erential operators, which are fundamental for
the study of di↵erential equations.

3.1 Matrix algebra

Linear transformation as a matrix

A function f : Rn ! Rm defines a linear transformation, if

(i) f(x+ z) = f(x) + f(z),

(ii) f(↵x) = ↵f(x),

for all x, z 2 Rn and ↵ 2 R. In the case thatm = n, we refer to f : Rn ! Rn

as a linear operator in Rn. In the standard basis {e1, ..., en} we can express
the ith component of the vector y = f(x) 2 Rm as

y
i

= f
i

(x) = f
i

(
nX

j=1

x
j

e
j

) =
nX

j=1

x
j

f
i

(e
j

),
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22 CHAPTER 3. LINEAR TRANSFORMATIONS

where f
i

: Rn ! R for all i = 1, ...,m. In component form, we write this as

y1 = a11x1 + ...+ a1nxn

...
y
m

= a
m1x1 + ...+ a

mn

x
n

(3.1)

with a
ij

= f
i

(e
j

). That is y = Ax, where A is an m⇥ n matrix,

A =

2

64
a11 · · · a1n
...

. . .
...

a
m1 · · · a

mn

3

75 . (3.2)

The set of real valued m ⇥ n matrices defines a vector space Rm⇥n,
by the basic operations of (i) component-wise matrix addition, and (ii)
component-wise scalar multiplication, that is

A+B =

2

64
a11 + b11 · · · a1n + b1n

...
. . .

...
a
m1 + b

m1 · · · a
mn

+ b
mn

3

75 , ↵A =

2

64
↵a11 · · · ↵a1n
...

. . .
...

↵a
m1 · · · ↵a

mn

3

75 ,

with A,B 2 Rm⇥n and ↵ 2 R.

Matrix-vector product

A matrix A 2 Rm⇥n defines a linear map x 7! Ax, by the operations of
matrix-vector product and component-wise scalar multiplication,

A(x+ y) = Ax+ Ay, x, y 2 Rn,

A(↵x) = ↵Ax, x 2 Rn,↵ 2 R.

In index notation we write a vector b = (b
i

), and a matrix A = (a
ij

),
with i the row index and j is the column index. For an m ⇥ n matrix A,
and x an n-dimensional column vector, we define the matrix-vector product
b = Ax to be the m-dimensional column vector b = (b

i

), such that

b
i

=
nX

j=1

a
ij

x
j

, i = 1, ...,m. (3.3)

With a
j

the jth column of A, an m-dimensional column vector, we can
express the matrix-vector product as a linear combination of the set of
column vectors {a

j

}n
j=1,

b = Ax =
nX

j=1

x
j

a
j

, (3.4)
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or in matrix form
2

66664
b

3

77775
=

2

66664
a1 a2 · · · a

n

3

77775

2

6664

x1

x2
...
x
n

3

7775
= x1

2

66664
a1

3

77775
+ x2

2

66664
a2

3

77775
+ ...+ x

n

2

66664
a
n

3

77775
.

The vector space spanned by {a
j

}n
j=1 is the column space, or range, of

the matrix A, so that range(A) = span{a
j

}n
j=1. The null space, or kernel,

of an m ⇥ n matrix A is the set of vectors x 2 Rn such that Ax = 0, with
0 the zero vector in Rm, that is null(A) = {x 2 Rn : Ax = 0}.

The dimension of the column space is the column rank of the matrix A,
rank(A). We note that the column rank is equal to the row rank, corre-
sponding to the space spanned by the row vectors of A, and the maximal
rank of an m⇥ n matrix is min(m,n), which we refer to as full rank.

Matrix-matrix product

The matrix-matrix product B = AC is a matrix in Rl⇥n, defined for two
matrices A 2 Rl⇥m and C 2 Rm⇥n, as

b
ij

=
mX

k=1

a
ik

c
kj

, (3.5)

with B = (b
ij

), A = (a
ik

) and C = (c
kj

).
We sometimes omit the summation sign and use the Einstein convention,

where repeated indices imply summation over those same indices, so that
we express the matrix-matrix product (3.5) simply as b

ij

= a
ik

c
kj

.
Similarly as for the matrix-vector product, we may interpret the columns

b
j

of the matrix-matrix product B as a linear combination of the columns
a
k

with coe�cients c
kj

b
j

= Ac
j

=
mX

k=1

c
kj

a
k

, (3.6)

or in matrix form
2

66664
b1 b2 · · · b

n

3

77775
=

2

66664
a1 a2 · · · a

m

3

77775

2

4 c1 c2 · · · c
n

3

5 .
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The composition f � g(x) = f(g(x)), of two linear transformations f :
Rn ! Rm and g : Rm ! Rl, with associated matrices A 2 Rm⇥n and
C 2 Rl⇥w, corresponds to the matrix-matrix product AC acting on x 2 Rn.

Matrix transpose and the inner and outer products

The transpose (or adjoint) of an m ⇥ n matrix A = (a
ij

) is defined as the
matrix AT = (a

ji

), with the column and row indices reversed.
Using the matrix transpose, the inner product of two vectors v, w 2 Rn

can be expressed in terms of a matrix-matrix product vTw, as

(v, w) = vTw =
⇥
v1 · · · v

n

⇤

2

666664

w1

...

w
m

3

777775
= v1w1 + ...+ v

n

w
n

. (3.7)

Similarly, the outer product, or tensor product, of two vectors v, w 2 Rn,
denoted by v ⌦ w, is defined as the m ⇥ n matrix corresponding to the
matrix-matrix product vwT , that is

v ⌦ w = vwT =

2

666664

v1

...

v
m

3

777775

⇥
w1 · · · w

n

⇤
=

2

666664

v1w1 · · · v1wn

...
...

v
m

v1 v
m

w
n

3

777775
.

In tensor notation we can express the inner and the outer products as
(v, w) = v

i

w
i

and v ⌦ w = v
i

w
j

, respectively.
The transpose has the property that (AB)T = BTAT , and thus satisfies

the equation (Ax, y) = (x,ATy), for any x 2 Rn, y 2 Rm and A 2 Rm⇥n,
which follows from the definition of the inner product in Euclidian vector
spaces, since

(Ax, y) = (Ax)Ty = xTATy = (x,ATy). (3.8)

A square matrix A 2 Rn⇥n is said to be symmetric (or self-adjoint) if
A = AT , which gives that (Ax, y) = (x,Ay). If in addition (Ax, x) > 0 for
all non-zero x 2 Rn, we say that A is a symmetric positive definite matrix.
A square matrix is said to be normal if ATA = AAT .



3.1. MATRIX ALGEBRA 25

Matrix norms

To measure the size of a matrix, we first introduce the Frobenius norm,
corresponding to the l2-norm of the matrix A interpreted as an mn-vector,
that is

kAk
F

=

 
mX

i=1

nX

j=1

|a
ij

|2
!1/2

. (3.9)

The Frobenius norm is induced by the following inner product over the
space Rm⇥n,

(A,B) = tr(ATB), (3.10)

with the trace of a square n⇥ n matrix C = (c
ij

) defined by

tr(C) =
nX

i=1

c
ii

. (3.11)

Figure 3.1: Illustration of the map x 7! Ax; of the unit circle kxk2 = 1
(left) to the ellipse Ax (right), corresponding to the matrix A in (3.13).

Matrix norms for A 2 Rm⇥n are also induced by the respective l
p

-norms
on Rm and Rn, in the form

kAk
p

= sup
x2Rn

x 6=0

kAxk
p

kxk
p

= sup
x2Rn

kxkp=1

kAxk
p

. (3.12)

The last equality follows from the definition of a norm, and shows that
the induced matrix norm can be defined in terms of its map of unit vectors,
which we illustrate in Figure 3.1 for the matrix

A =


1 2
0 2

�
. (3.13)
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We further have the following inequality,

kAxk
p

 kAk
p

kxk
p

, (3.14)

which follows from (3.12).

Determinant

The determinant of a square matrix A is denoted det(A) or |A|. For a 2⇥2
matrix we have the explicit formula

det(A) =

����
a b
c d

���� = ad� bc. (3.15)

For example, the determinant of the matrix A in (3.13) is computed as
det(A) = 1 · 2� 2 · 0 = 2.

The formula for the determinant is extended to a 3⇥ 3 matrix by

det(A) =

������

a b c
d e f
g h i

������
= a

����
e f
h i

����� b

����
d f
g i

����+ c

����
d e
g h

����

= a(ei� fh)� b(di� fg) + c(dh� eg), (3.16)

and by recursion this formula can be generalized to any square matrix.
For a 2 ⇥ 2 matrix the absolute value of the determinant is equal to

the area of the parallelogram that represents the image of the unit square
under the map x 7! Ax, and similarly for a 3 ⇥ 3 matrix the volume of
the parallelepiped representing the mapped unit cube. More generally, the
absolute value of the determinant det(A) represents a scale factor of the
linear transformation A.

Matrix inverse

If the column vectors {a
j

}n
j=1 of a square n ⇥ n matrix A form a basis for

Rn, then all vectors b 2 Rn can be expressed as b = Ax, where the vector
x 2 Rn holds the coordinates of b in the basis {a

j

}n
j=1.

In particular, all x 2 Rn can be expressed as x = Ix, where I is the
square n ⇥ n identity matrix in Rn, taking the standard basis as column
vectors,

x = Ix =

2

66664
e1 e2 · · · e

n

3

77775

2

6664

x1

x2
...
x
n

3

7775
=

2

6664

1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 · · · 0 1

3

7775

2

6664

x1

x2
...
x
n

3

7775
,
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(1,0)	

(0,1)	

(1,0)	

(0,1)	

(2,2)	 (3,2)	

Figure 3.2: The map x 7! Ax (right) of the unit square (left), for the matrix
A in (3.13), with the corresponding area given as | det(A)| = 2.

with the vector entries x
i

corresponding to the Cartesian coordinates of the
vector x.

A square matrix A 2 Rn⇥n is invertible, or non-singular, if there exists
an inverse matrix A�1 2 Rn⇥n, such that

A�1A = AA�1 = I, (3.17)

which also means that (A�1)�1 = A. Further, for two n⇥n matrices A and
B, we have the property that (AB)�1 = B�1A�1.

Theorem 4 (Inverse matrix). For a square matrix A 2 Rn⇥n, the following
statements are equivalent:

(i) A has an inverse A�1,

(ii) det(A) 6= 0,

(iii) rank(A) = n,

(iv) range(A) = Rn

(v) null(A) = {0}.

The matrix inverse is unique. To see this, assume that there exist two
matrices B1 and B2 such that AB1 = AB2 = I; which by linearity gives
that A(B1 � B2) = 0, but since null(A) = {0} we have that B1 = B2.



28 CHAPTER 3. LINEAR TRANSFORMATIONS

3.2 Orthogonal projectors

Orthogonal matrix

A square matrix Q 2 Rn⇥n is ortogonal, or unitary, if QT = Q�1. With q
j

the columns of Q we thus have that QTQ = I, or in matrix form,

2

6664

q1
q2
...
q
n

3

7775

2

66664
q1 q2 · · · q

n

3

77775
=

2

6664

1
1

. . .
1

3

7775
,

so that the columns q
j

form an orthonormal basis for Rn.
Multiplication by an orthogonal matrix preserves the angle between two

vectors x, y 2 Rn, since

(Qx,Qy) = (Qx)TQy = xTQTQy = xTy = (x, y), (3.18)

and thus also the length of a vector,

kQxk = (Qx,Qx)1/2 = (x, x)1/2 = kxk. (3.19)

For example, counter-clockwise rotation by an angle ✓ in R2, takes the
form of multiplication by an orthogonal matrix,

Q
rot

=


cos(✓) � sin(✓)
sin(✓) cos(✓)

�
, (3.20)

whereas reflection in the line with a slope given by the angle ✓, corresponds
to multiplication by the orthogonal matrix,

Q
ref

=


cos(2✓) sin(2✓)
sin(2✓) � cos(2✓)

�
, (3.21)

where we note the general fact that for a rotation det(Q
rot

) = 1, and for a
reflection det(Q

ref

) = �1.

Orthogonal projector

A projection matrix, or projector, is a square matrix P such that

P 2 = PP = P. (3.22)
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It follows that
Pv = v, (3.23)

for all vectors v 2 range(P ), since v is of the form v = Px for some x, and
thus Pv = P 2x = Px = v. For v /2 range(P ) we have that P (Pv � v) =
P 2v � Pv = 0, so that the projection error Pv � v 2 null(P ).

The matrix I�P is also a projector, the complementary projector to P ,
since (I � P )2 = I � 2P + P 2 = I � P . The range and null space of the
two projectors are related as

range(I � P ) = null(P ), (3.24)

and
range(P ) = null(I � P ), (3.25)

so that P and I � P separates Rn into the two subspaces S1 = range(P )
and S2 = range(I � P ), since the only v 2 range(P ) \ range(I � P ) is the
zero vector; v = v � Pv = (I � P )v = {0}.

x 

y 

Pyx 

P⊥yx 

Pr
yx 

H 

Figure 3.3: The projector P
y

x of a vector x in the direction of another
vector y, its orthogonal complement P?yx, and P r

y

x, the reflector of x in
the hyperplane H defined by y as a normal vector.

If the two subspaces S1 and S2 are orthogonal, we say that P is an
orthogonal projector. This is equivalent to the condition P = P T , since the
inner product between two vectors in S1 and S2 then vanish,

(Px, (I � P )y) = (Px)T (I � P )y = xTP T (I � P )y = xT (P � P 2)y = 0,
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and if P is an orthogonal projector, so is I � P .
For example, the orthogonal projection of one vector x in the direc-

tion of another vector y, expressed in (2.19), corresponds to an orthogonal
projector P

y

, by

(x, y)y

kyk2 =
y(y, x)

kyk2 =
y(yTx)

kyk2 =
yyT

kyk2x = P
y

x. (3.26)

Similarly we can define the orthogonal complement P?yx, and P r

y

x, the
reflection of x in the hyperplane H defined by y as a normal vector, so that

P
y

=
yyT

kyk2 , P?y = I � yyT

kyk2 , P r

y

= I � 2
yyT

kyk2 , (3.27)

defines orthogonal projectors, where we note that a hyperplane is a subspace
in V of codimension 1.

3.3 Exercises

Problem 10. Prove the equivalence of the definitions of the induced matrix
norm, defined by

kAk
p

= sup
x2Rn

x 6=0

kAxk
p

kxk
p

= sup
x2Rn

kxkp=1

kAxk
p

. (3.28)

Problem 11. For A 2 Rm⇥l, B 2 Rl⇥n, prove that (AB)T = BTAT .

Problem 12. For A,B 2 Rn⇥n, prove that (AB)�1 = B�1A�1.

Problem 13. Prove the inequality (3.14).

Problem 14. Prove that an orthogonal matrix is normal.

Problem 15. Show that the matrices A and B are orthogonal and com-
pute their determinants. Which matrix represents a rotation and reflection,
respectively?

A =


cos(✓) � sin(✓)
sin(✓) cos(✓)

�
B =


cos(✓) sin(✓)
sin(✓) � cos(✓)

�
(3.29)

Problem 16. For P a projector, prove that range(I � P ) = null(P ), and
that range(P ) = null(I � P ).

Problem 17. For the vector y = (1, 0)T , compute the action of the projec-
tors P

y

, P?y, P r

y

on a general vector x = (x1, x2)T .



Chapter 4

Linear operators in Rn

In this chapter we give some examples of linear operators in the vector
space Rn, used extensively in various fields, including computer graphics,
robotics, computer vision, image processing, and computer aided design.

We also meet di↵erential equations for the first time, in the form of
matrix operators acting on discrete approximations of functions, defined by
their values at the nodes of a grid.

4.1 Approximation of di↵erential equations

Di↵erence and summation matrices

Subdivide the interval [0, 1] into a structured grid T h with n intervals and
n+ 1 nodes x

i

, such that 0 = x0 < x1 < x2 < ... < x
n

= 1, with a constant
interval length, or grid size, h = x

i

� x
i�1 for all i, so that x

i

= x0 + ih.

For each x = x
i

, we may approximate the primitive function F (x) of a
function f(x), expressed here as a definite integral with f(0) = 0, by

F (x
i

) =

Z
xi

0

f(s)ds ⇡
iX

k=1

f(x
k

)h ⌘ F
h

(x
i

), (4.1)

which defines a function F
h

(x
i

) ⇡ F (x
i

) for all nodes x
i

in the subdivision,
based on Riemann sums.

The function F
h

defines a linear transformation L
h

of the vector of
sampled function values at the nodes y = (f(x1), ..., f(xn

))T , which can

31
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be expressed by the following matrix equation,

L
h

y =

2

6664

h 0 · · · 0
h h · · · 0
...

. . .
...

h h · · · h

3

7775

2

6664

f(x1)
f(x2)

...
f(x

n

)

3

7775
=

2

6664

f(x1)h
f(x1)h+ f(x2)h

...P
n

k=1 f(xk

)h

3

7775
, (4.2)

where L
h

is a summation matrix, with an associated inverse L�1
h

,

L
h

= h

2

6664

1 0 · · · 0
1 1 · · · 0
...

. . .
...

1 1 · · · 1

3

7775
) L�1

h

= h�1

2

6664

1 0 · · · 0
�1 1 · · · 0
...

. . .
...

0 · · · �1 1

3

7775
. (4.3)

The inverse matrix L�1
h

corresponds to a di↵erence matrix over the same
subdivision T h, approximating the slope (derivative) of the function f(x).
To see this, multiply the matrix L�1

h

to y = (f(x
i

)),

L�1
h

y = h�1

2

6664

1 0 · · · 0
�1 1 · · · 0
...

. . .
...

0 · · · �1 1

3

7775

2

6664

f(x1)
f(x2)

...
f(x

n

)

3

7775
=

2

6664

(f(x1)� f(x0))/h
(f(x2)� f(x1))/h

...
(f(x

n

)� f(x
n�1))/h

3

7775
,

where we recall that f(x0) = f(0) = 0.

f(x)	

x1	 x2	 x3	 x4	x0=0	 xn=1	 x	 x	

f(x)	

x1	 x2	 x3	 x4	 xn=1	x0=0	

Figure 4.1: Approximation of the integral of a function f(x) in the form of
Riemann sums (left), and approximation of the derivative of f(x) by slopes
computed from function values in the nodes x

i

(right), on a subdivision of
[0, 1] with interval length h.
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As the interval length h ! 0, the summation and di↵erence matrices
converge to integral and di↵erential operators, such that for each x 2 (0, 1),

L
h

y !
Z

x

0

f(s)ds, L�1
h

y ! f 0(x). (4.4)

Further, we have for the product of the two matrices that

y = L
h

L�1
h

y ! f(x) =

Z
x

a

f 0(s)ds, (4.5)

as h ! 0, which corresponds to the Fundamental theorem of Calculus.

Di↵erence operators

The matrix L�1
h

in (4.3) corresponds to a backward di↵erence operator D�
h

,
and similarly we can define a forward di↵erence operator D+

h

, by

D�
h

= h�1

2

666664

1 0 0 · · · 0
�1 1 0 · · · 0
...

. . .
...

0 · · · �1 1 0
0 · · · 0 �1 1

3

777775
, D+

h

= h�1

2

666664

�1 1 0 · · · 0
0 �1 1 · · · 0
...

. . .
...

0 · · · 0 �1 1
0 · · · 0 0 �1

3

777775
.

The matrix-matrix product D+
h

D�
h

takes the form,

D+
h

D�
h

= h�2

2

666664

�1 1 0 · · · 0
1 �2 1 · · · 0
...

. . .
...

0 · · · 1 �2 1
0 · · · 0 1 �2

3

777775
, (4.6)

which corresponds to an approximation of a second order di↵erential oper-
ator. The matrix A = �D+

h

D�
h

is diagonally dominant, that is

|a
ii

| �
X

j 6=i

|a
ij

|, (4.7)

and symmetric positive definite, since

xTAx = ...+ x
i

(�x
i�1 + 2x

i

� x
i+1) + ...+ x

n

(�x
n�1 + 2x

n

)

= ...� x
i

x
i�1 + 2x2

i

� x
i

x
i+1 � x

i+1xi

+ ...� x
n�1xn

+ 2x2
n

= ...+ (x
i

� x
i�1)

2 + (x
i+1 � x

i

)2 + ...+ x2
n

> 0,

for any non-zero vector x.
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The finite di↵erence method

For a vector y = (u(x
i

)), the ith row of the matrix D+
h

D�
h

corresponds to a
finite di↵erence stencil, with u(x

i

) function values sampled at the nodes x
i

of the structured grid representing the subdivision of the interval I = (0, 1),

[(D+
h

D�
h

)y]
i

=
u(x

i+1)� 2u(x
i

) + u(x
i�1)

h2

=

u(x
i+1)� u(x

i

)

h
� u(x

i

)� u(x
i�1)

h
h

.

Similarly, the di↵erence operatorsD�
h

andD+
h

correspond to finite di↵erence
stencils over the grid, and we have that for x 2 I,

(D+
h

D�
h

)y ! u00(x), (D�
h

)y ! u0(x), (D+
h

)y ! u0(x), (4.8)

as the grid size h ! 0.

-1	 2	 -1	

-1	 -1	

-1	

-1	

6	
-1	

-1	
-1	

-1	

-1	-1	 4	

Figure 4.2: Example of finite di↵erence stencils corresponding to the di↵er-
ence operator �(D+

h

D�
h

) over structured grids in R (lower left), R2 (right)
and R3 (upper left).

The finite di↵erence method for solving di↵erential equations is based
on approximation of di↵erential operators by such di↵erence stencils over a
grid. We can thus, for example, approximate the di↵erential equation

�u00(x) + u(x) = f(x), (4.9)

by the matrix equation

�(D+
h

D�
h

)y + (D�
h

)y = b, (4.10)

with b
i

= (f(x
i

)). The finite di↵erence method extends to multiple dimen-
sions, where the di↵erence stencils are defined over structured (Cartesian)
grids in R2 or R3, see Figure 4.2.
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Solution of di↵erential equations

Since the second order di↵erence matrix A = �(D+
h

D�
h

) is symmetric pos-
itive definite, there exists a unique invers A�1. For example, in the case of
n = 5 and the di↵erence matrix A below, we have that

A = 1/h2

2

66664

2 �1 0 0 0
�1 2 �1 0 0
0 �1 2 �1 0
0 0 �1 2 �1
0 0 0 �1 2

3

77775
) A�1 = h2/6

2

66664

5 4 3 2 1
4 8 6 4 2
3 6 9 6 3
2 4 6 8 4
1 2 3 4 5

3

77775
.

The matrix A�1 corresponds to a symmetric integral (summation) oper-
ator, where the matrix elements decay with the distance from the diagonal.
The integral operator has the property that when multiplied to a vector
y = (y

i

), each element y
i

is transformed into an average of all the vector
elements of y, with most weight given to the elements close to y

i

.
Further, for y = (u(x

i

)) and b = (f(x
i

)), the solution to the di↵erential
equation

�u00(x) = f(x) (4.11)

can be approximated by
y = A�1b. (4.12)

We can thus compute approximate solutions for any function f(x) on
the right hand side of the equation (4.11). Although, we note that while
the n ⇥ n matrix A is sparse, with only few non-zero elements near the
diagonal, the inverse A�1 is a full matrix without zero elements.

In general the full matrix A�1 has a much larger memory footprint than
the sparse matrix A. Therefore, for large matrices, it may be impossible to
hold the matrix A�1 in memory, so that instead iterative solution methods
must be used without the explicit construction of the matrix A�1.

4.2 Projective geometry

A�ne transformations

An a�ne transformation, or a�ne map, is a linear transformation composed
with a translation, corresponding to a multiplication by a matrixA, followed
by addition of a position vector b, that is

x 7! Ax+ b. (4.13)
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For example, an object defined by a set of vectors in R2 can be scaled
by a diagonal matrix, or rotated by a Givens rotation matrix,

A
rot

=


cos(✓) � sin(✓)
sin(✓) cos(✓)

�
, (4.14)

with ✓ a counter-clockwise rotation angle.
Any triangle in the Euclidian plane R2 is related to each other through

an invertible a�ne map. There is also an a�ne map from R2 to a surface
(manifold) in R3, although this map is not invertible, see Figure 4.4.

(1,0)	

(0,1)	
Ax+b	

R2	
x2	

x1	
(1,0,0)	

(0,1,0)	

Ax+b	

R3	

x2	

x1	

x3	

Figure 4.3: A�ne maps x 7! Ax+ b of the reference triangle, with corners
in (0, 0), (1, 0), (0, 1); in R2 (left); to a surface (manifold) in R3 (right).

Homogeneous coordinates

By using homogeneous coordinates, or projective coordinates, we can ex-
press any a�ne transformation as one single matrix multiplication, includ-
ing translation. The underlying definition is that the representation of a
geometric object x is homogeneous if �x = x, for all real numbers � 6= 0.

An R2 vector x = (x1, x2)T in standard Cartesian coordinates is repre-
sented as x = (x1, x2, 1)T in homogeneous coordinates, from which follows
that any object u = (u1, u2, u3) in homogeneous coordinates can be ex-
pressed in Cartesian coordinates, by

2

4
u1

u2

u3

3

5 =

2

4
u1/u3

u2/u3

1

3

5 )

x1

x2

�
=


u1/u3

u2/u3

�
. (4.15)
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u3 

u1 

u2 

x1 

x2 

1 

Figure 4.4: The relation of homogeneous (projective) coordinates and
Cartesian coordinates.

It follows that in homogeneous coordinates, rotation by an angle ✓ and
translation by a vector (t1, t2), both can be expressed as matrices,

A
rot

=

2

4
cos(✓) � sin(✓) 0
sin(✓) cos(✓) 0
0 0 1

3

5 , A
trans

=

2

4
1 0 t1
0 1 t2
0 0 1

3

5 . (4.16)

An advantage of homogenous coordinates is also the ability to apply
combinations of transformations by multiplying the respective matrices,
which is used extensively e.g. in robotics, computer vision, and computer
graphics. For example, an a�ne transformation can be expressed by the
matrix-matrix product A

trans

A
rot

.

4.3 Computer graphics

Vector graphics

Vector graphics is based the representation of primitive objects defined by
a set of parameters, such as a circle in R2 defined by its center and radius,
or a cube in R3 defined by its corner points. Lines and polygones are other
common objects, and for special purposes more advances objects are used,
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such as NURBS (Non-uniform rational B-splines) for computer aided design
(CAD), and PostScript fonts for digital type setting.

These objects my be characterized by their parameter values in the form
of vectors in Rn, and operations on such objects can be defined by a�ne
transformations acting on the vectors of parameters.

Raster graphics

Whereas vector graphics describes an image in terms of geometric objects
such as lines and curves, raster graphics represent an image as an array of
color values positioned in a grid pattern. In 2D each square cell in the grid
is called a pixel (from picture element), and in 3D each cube cell is known
as a voxel (volumetric pixel).

In 2D image processing, the operation of a convolution, or filter, is the
multiplication of each pixel and its neighbours by a convolution matrix,
or kernel, to produce a new image where each pixel is determined by the
kernel, similar to the stencil operators in the finite di↵erence method.

Common kernels include the Sharpen and Gaussian blur filters,

2

4
0 �1 0
�1 5 �1
0 �1 0

3

5 ,
1

16

2

4
1 2 1
2 4 2
1 2 1

3

5 , (4.17)

where we note the similarity to the finite di↵erence stencil of the second
order derivative (Laplacian) and its inverse.

Figure 4.5: Raster image (left), transformed by a Sharpen (middle) and a
blur (right) filters.


