Chapter 9

Initial value problems

9.1 The scalar initial value problem

We consider the following ordinary differential equation (ODE) for a scalar function $u: \mathbb{R}^{+} \rightarrow \mathbb{R}$, with derivative $\dot{u}=d u / d t$,

$$
\begin{align*}
& \dot{u}(t)=f(u(t), t), \quad 0<t \leq T, \tag{9.1}\\
& u(0)=u_{0},
\end{align*}
$$

which we refer to as a scalar initial value problem, defined on the interval $I=[0, T]$ by the function $f: \mathbb{R} \times \mathbb{R}^{+} \rightarrow \mathbb{R}$, and the initial condition $u(0)=u_{0}$.

Only in simple special cases can analytical solutions be found. Instead, in the general case, numerical methods must be used to compute approximate solutions to (9.1).

9.2 Time stepping methods

The variable $t \in[0, T]$ is often interpreted as time, and many numerical methods for in (9.1) are based on the idea of time stepping, where successive approximations $U\left(t_{n}\right)$ are computed on a partition $\mathcal{T}_{k}: 0=t_{0}<t_{1}<\ldots<$ $t_{N}=T$, starting from $U\left(t_{0}\right)=u_{0}$, with a suitable interpolation of $U(t)$ on each subinterval $I_{n}=\left(t_{n-1}, t_{n}\right)$ with length $k_{n}=t_{n}-t_{n-1}$.

Forward Euler method

For $t_{n} \in \mathcal{T}_{k}$, we may approximate the derivative $\dot{u}\left(t_{n}\right)$ by

$$
\begin{equation*}
\dot{u}\left(t_{n-1}\right) \approx \frac{u\left(t_{n}\right)-u\left(t_{n-1}\right)}{k_{n}} \tag{9.2}
\end{equation*}
$$

$$
\mathrm{T}_{\mathrm{k}}: 0=\mathrm{t}_{0}<\mathrm{t}_{1}<\ldots<\mathrm{t}_{\mathrm{N}}=\mathrm{T}
$$

Figure 9.1: Partition of interval $I=[0, T], \mathcal{T}_{k}: 0=t_{0}<t_{1}<\ldots<t_{N}=T$.
so that

$$
\begin{equation*}
u\left(t_{n}\right) \approx u\left(t_{n-1}\right)+k_{n} \dot{u}\left(t_{n-1}\right)=u\left(t_{n-1}\right)+k_{n} f\left(u\left(t_{n-1}\right), t_{n-1}\right) \tag{9.3}
\end{equation*}
$$

which motivates the forward Euler method for successive computational approximation of $U_{n}=U\left(t_{n}\right)$.

```
Algorithm 13: Forward Euler method
    \(U_{0}=u_{0}\)
    for \(n=1,2, \ldots, N-1\) do
        \(U_{n}=U_{n-1}+k_{n} f\left(U_{n-1}, t_{n-1}\right)\)
    end
```

We note that the forward Euler method is explicit, meaning that U_{n+1} is directly computable from the previous solution U_{n} in the time stepping algorithm. The method is thus also referred to as the explicit Euler method.

Backward Euler method

Alternatively, we may approximate the derivative $\dot{u}\left(t_{n+1}\right)$ by

$$
\begin{equation*}
\dot{u}\left(t_{n}\right) \approx \frac{u\left(t_{n}\right)-u\left(t_{n-1}\right)}{k_{n}} \tag{9.4}
\end{equation*}
$$

so that

$$
\begin{equation*}
u\left(t_{n}\right) \approx u\left(t_{n-1}\right)+k_{n} \dot{u}\left(t_{n}\right)=u\left(t_{n-1}\right)+k_{n} f\left(u\left(t_{n}\right), t_{n}\right) \tag{9.5}
\end{equation*}
$$

which motivates the backward Euler method for successive computational approximation of $U_{n}=U\left(t_{n}\right)$.

```
Algorithm 14: Backward Euler method
    \(U_{0}=u_{0}\)
    for \(n=1,2, \ldots, N-1\) do
        \(U_{n}=U_{n-1}+k_{n} f\left(U_{n}, t_{n}\right)\)
    end
```

Contrary to the forward Euler method, the backward Euler method is implicit, thus also referred to as the implicit Euler method, meaning that U_{n+1} is not directly computable from U_{n}, but is obtained from the solution of an algebraic (possibly nonlinear) equation,

$$
\begin{equation*}
x=U_{n-1}+k_{n} f\left(x, t_{n}\right), \tag{9.6}
\end{equation*}
$$

for example, through the fixed point iteration,

$$
\begin{equation*}
x^{(k+1)}=U_{n-1}+k_{n} f\left(x^{(k)}, t_{n}\right) . \tag{9.7}
\end{equation*}
$$

We note that the fixed point iteration (9.7) converges if $k_{n} L_{f}<1$, with L_{f} the Lipschitz constant of the function $f\left(\cdot, t_{n}\right)$, thus if the time step k_{n} is small enough.

Time stepping as quadrature

There is a strong connection between time stepping methods and numerical approximation of integrals, which we refer to as quadrature. For example, assume that the initial condition is zero and that the function f in (9.1) does not depend on the solution u, but the time t only, that is $f=f(t)$. The solution $u(t)$ is then the primitive function of $f(t)$ that satisfies $u(0)=0$,
corresponding to the area under the graph of the function $f(t)$ over the interval $[0, t]$.

We can approximate this primitive function by left and right rectangular rule quadrature, or Riemann sums, which we illustrate in Figure 9.3. The two approximations of the area under the graph then corresponds to the forward and backward Euler approximations to the initial value problem (9.1) with $u_{0}=0$ and $f=f(t)$.

Figure 9.2: Left (left) and right (right) rectangular rule quadrature, or Riemann sums, approximating the primitive function of $f(t)$, corresponding to the area under the graph.

More generally, by the Fundamental Theorem of Calculus we have, for each subinterval $I_{n}=\left(t_{n-1}, t_{n}\right)$, that

$$
\begin{equation*}
u\left(t_{n}\right)=u\left(t_{n-1}\right)+\int_{t_{n-1}}^{t_{n}} f(u(t), t) d t \tag{9.8}
\end{equation*}
$$

from which we can derive suitable time stepping methods corresponding to different quadrature rules used to evaluate the integral in (9.8).

Quadrature as interpolation

Quadrature as an approximate integral of an exact function, can alternatively be expressed as exact integration of an approximate function. For example, the rectangular quadrature rule corresponds to exact integration of a piecewise (over each subinterval I_{n}) constant approximation of the function $f(t)$, with its value determined by the function value at the left or right endpoint of the interval, $f\left(t_{n-1}\right)$ or $f\left(t_{n}\right)$.

From this perspective, one may ask if such a piecewise constant approximation can be chosen in a more clever way to reduce the error in the
approximation of the integral, which naturally leads to the midpoint rule where the piecewise constant function is chosen based on the function value at the midpoint of the subinterval, that is $\left(f\left(t_{n-1}\right)+f_{n}\right) / 2$.

Further, we may seek to approximate the function by a higher order polynomial. By linear interpolation over the partition \mathcal{T}_{k}, corresponding approximation of the function by a continuous piecewise linear polynomial which is exact at each node t_{n}, exact integration corresponds to the trapezoidal rule.

Figure 9.3: Midpoint (left) and trapezoidal (right) quadrature rules, corresponding to interpolation by a piecewise constant and piecewise linear function respectively.

Interpolation as time stepping

By (9.8), the midpoint and trapezoidal rules can also be formulated as time stepping methods. Although, in the case of a time stepping method, interpolation cannot be directly based on the function $f(u(t), t)$ since $u(t)$ is unknown. Instead we seek an approximate solution $U(t)$ to the initial value problem (9.1) as a piecewise polynomial of a certain order, determined by $f\left(U_{n}, t_{n}\right)$ through the successive approximations U_{n}.

```
Algorithm 15: Trapezoidal time stepping method
    \(U_{0}=u_{0}\)
    for \(n=1,2, \ldots, N-1\) do
        \(U_{n}=U_{n-1}+\frac{k_{n}}{2}\left(f\left(U_{n}, t_{n}\right)+f\left(U_{n-1}, t_{n-1}\right)\right)\)
    end
```

Both the midpoint method and the trapezoidal method are implicit, and thus require the solution of an equation, possibly nonlinear, at each time step.

To seek approximate solutions to differential equations as piecewise polynomials is a powerful idea that we will meet many times. Any piecewise polynomial function can be expressed as a linear combination of basis functions, for which the coordinates can be determined, for example, based on minimization or orthogonality conditions on the residual of the differential equation.

Figure 9.4: Examples of a discontinuous piecewise constant polynomial determined by its value at the right endpoint of the subinterval (left), and a continuous piecewise linear polynomial determined by its value in the nodes of the partition (right).

The θ-method

We can formulate the forward and backward Euler methods, and the trapezoidal method, as one single method with a parameter θ, the θ-method. For $\theta=1$, we get the explicit Euler method, for $\theta=0$ the implicit Euler method, and $\theta=0.5$ corresponds to the trapezoidal rule.

```
Algorithm 16: The \(\theta\)-method for initial value problems
    \(U_{0}=u_{0}\)
    for \(n=1,2, \ldots, N-1\) do
        \(U_{n}=U_{n-1}+k_{n}\left((1-\theta) f\left(U_{n}, t_{n}\right)+\theta f\left(U_{n-1}, t_{n-1}\right)\right)\)
    end
```

Theorem 14 (Local error estimate for the θ-method). For the θ-method over one subinterval $I_{n}=\left(t_{n-1}, t_{n}\right)$ of length $k_{n}=t_{n}-t_{n-1}$, with $U_{n-1}=$ $u\left(t_{n-1}\right)$, we have the following local error estimate,

$$
\begin{equation*}
\left|u\left(t_{n}\right)-U_{n}\right|=O\left(k_{n}^{3}\right) \tag{9.9}
\end{equation*}
$$

for $\theta=0.5$, and

$$
\begin{equation*}
\left|u\left(t_{n}\right)-U_{n}\right|=O\left(k_{n}^{2}\right) \tag{9.10}
\end{equation*}
$$

if $\theta \neq 0.5$.

9.3 Systems of initial value problems

We now consider systems of initial value problems for a vector valued function $u: \mathbb{R}^{+} \rightarrow \mathbb{R}^{n}$ defined on the interval $I=[0, T]$, with derivative $\dot{u}=$ $d u / d t=\left(d u_{1} / d t, \ldots, d u_{n} / d t\right)^{T}$ defined by the function $f: \mathbb{R}^{n} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{n}$, such that

$$
\begin{align*}
& \dot{u}(t)=f(u(t), t), \quad 0<t \leq T, \tag{9.11}\\
& u(0)=u_{0} .
\end{align*}
$$

Time stepping methods for (9.11) are analogous to the scalar case (9.1), including the θ-method of Algorithm 16, with the difference that for implicit methods a system of (possibly nonlinear) equations needs to be solved.

Particle models

Newton's laws of motion for a particle can be formulated as an initial value problem of the form (9.11), with

$$
u=\left[\begin{array}{l}
v \tag{9.12}\\
x
\end{array}\right], \quad f=\left[\begin{array}{c}
F / m \\
v
\end{array}\right],
$$

with $x=x(t)$ position, $v=v(t)$ the velocity, and m the mass of the particle, and with $F=F(t)$ the force applied.

For example, the force $F=m g$ models gravitation, with g the gravitation constant, and the force $F=-k x$ models an elastic spring (Hooke's law) with spring constant k.

Solar system

Newton's gravitational law models pairwise force interactions, such that the force $F_{i j}$ acting on particle p_{i} by p_{j} is given by,

$$
\begin{equation*}
F_{i j}=G \frac{m_{i} m_{j}}{\left\|x_{i}-x_{j}\right\|^{2}} \tag{9.13}
\end{equation*}
$$

where $m_{i} \in \mathbb{R}$ and $x_{i} \in \mathbb{R}^{n}$ denotes the mass and position of particle p_{i}.

Mass-spring model

The forces in a mass-spring model represent pairwise interactions between particles connected via springs, such that the force $F_{i j}$ acting on particle p_{i} by p_{j} is given by,

$$
\begin{equation*}
F_{i j}=-k_{i j}\left(x_{i}-x_{j}\right), \tag{9.14}
\end{equation*}
$$

with $k_{i j}=k_{j i}$ the relevant spring constant.

