Chapter 7

Iterative methods for linear
systems

In this chapter we revisit the problem of solving linear systems of equations,
but now in the context of large sparse systems for which direct methods are
too expensive, in memory and execution time.

We introduce instead iterative methods, for which matrix sparsity is
exploited to develop fast algorithms with a low memory footprint.

7.1 Stationary iterative methods

Iterative methods

For a given nonsingular matrix A € R™" and vector b € R", we consider
the problem of finding a vector x € R™, such that

Az = b, (7.1)

where the size n of the system is large, and the matrix A is sparse with the
number of nonzero elements being O(n) and not O(n?).

We do not seck to construct the exact solution = A~'b, but instead we
will develop iterative methods based on algorithms that generate a sequence
of approximations {z®)},¢ that converges towards x, with

e®) =g — 2k, (7.2)

the error at iteration k.
The error is not directly computable since the exact solution is unknown,
but the error can be expressed in terms of the residual r® = b — Az, as

r® =p— Az® = Az — Az® = Ae®) (7.3)

o7
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so that for || - || = || - ||2, we have that
le®l = 1A B < A=, (7.4)
and similarly
IO = 1A < Al (7.5)
The condition number of A relative to the norm || - || is defined as
k(A) = AIIAI, (7.6)

which together with (7.4) and (7.5) provides an estimate of the relative
error in terms of the relative residual.

Theorem 10 (Error estimate). For {#("},50 a sequence of approzimate
solutions to the linear system of equations Ax = b, the relative error can be
estimated as

le™]]

@]

Ir ™|
Ir @1

< r(4)

(7.7)

The error estimate (7.7) may be used as a stopping criterion for when
to terminate an iterative algorithm,

<TOL, (7.8)

with TOL > 0 the chosen tolerance.

Although, to use the relative error with respect to the initial approxima-
tion can be problematic, since the choice of 2(?) may be completely arbitrary
and not of significance for the problem at hand. Instead it is more suitable
to formulate a stopping criterion based on the following condition,

Ir™®]

corresponding to z(© = 0.

Stationary iterative methods

Stationary iterative methods are formulated as a linear fized point iteration
of the form
e * D = Ma® 4o (7.10)

with M € R™*" the iteration matrix, {x(k)}kzo C R" a sequence of approx-
imations, and ¢ € R"™ a vector.
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Theorem 11 (Banach fixed point theorem for matrices). If ||M]| < 1,
the fixed point iteration (7.10) converges to the solution of the equation
x=Mzx+ c.

Proof. For any k > 1, we have that

< M 24D < [ — o)

Further, for m > n,

2 = 2| = 2 = otV 4. 4 2D — o]

< (M (M) 2 = 2,
so that with ||M|| < 1. We thus have that

lim [|z(™ — 2| =0, (7.11)
n—oo
that is {2(™}22, is a Cauchy sequence, and since the vector space R™ is
complete, all Cauchy sequences converge, so there exists an x € R" such
that
z = lim 2™, (7.12)

n—o0

By taking the limit of both sides of (7.10) we find that x satisfies the
equation x = Mx + c. O

Further, an equivalent condition for convergence is that the spectral
radius p(M) < 1, with

A) = Al 7.13

p(A) féﬂ%' | (7.13)

In particular, for a real symmetric matrix A, the spectral radius is identical
to the induced 2-norm, that is p(A) = || A]|2.

Richardson iteration

The linear system Ax = b can be formulated as a fixed point iteration
through the Richardson iteration, with an iteration matrix M = I — A,

2D = (1 — A)z® b, (7.14)

which will converge if || — A|| < 1, or p(A) < 1. We note that for an initial
approximation z(®) = 0, we obtain for k = 0,

e = (I—A)z® +b=0
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for k =1,
2 = (I —A)zW +b= (I - A)b+b=2b— Ab,
for k = 2,
23 = (I —A)z® +b= (I - A)(2b— Ab) +b = 3b — 3Ab + A%,

and more generally, that the iterate ® is a linear combination of powers
of the matrix A acting on b, that is

k—1
2™ =" a; A%, (7.15)
1=0
with o; € R.

Preconditioned Richardson iteration

To improve convergence of Richardson iteration we can precondition the
system Ax = b by multiplication of both sides of the equation by a matrix
B, so that we get the new system

BAz = Bb, (7.16)

for which Richardson iteration will converge if ||/ —BA|| < 1, or equivalently
p(BA) < 1, and we then refer to B as an approzimate inverse of A. The
preconditioned Richardson iteration takes the form

g* ) = (1 — BA)2™ + By, (7.17)

and the preconditioned residual Bb— BAz®*) is used as basis for a stopping
criterion.

Iterative methods based on matrix splitting

An alternative to Richardson iteration is matriz splitting, where stationary
iterative methods are formulated based on splitting the matrix into a sum

A == Al + AQ, (718)

where A; is chosen as a nonsingular matrix easy to invert, such as a diagonal
matrix D, a (strict) lower triangular matrix L or (strict) upper triangular
matrix U, where L and U have zeros on the diagonal.
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Jacobi iteration

Jacobi iteration is based on the splitting
Ai=D, Ay=R=A-D, (7.19)

which gives the iteration matrix M; = —D~ 'R and ¢ = D~'b, or in terms
of the elements of A = (a;;),

xl(kﬂ) =a; (b— Z aijxgk)), (7.20)
J#

where the diagonal matrix D is trivial to invert. To use Jacobi iteration as
a preconditioner, we choose B = D!,

Gauss-Seidel iteration

Gauss-Seidel iteration is based on the splitting

Al :L, A2 :R:A—L, (721)
which gives the iteration matrix Mgg = —L 'R and ¢ = L~ 'b, or
mgkﬂ) =a; (b— Z aijx§k+1) - Z a,-jxgk)), (7.22)
7<i 7>t

where the lower triangular matrix L is inverted by forward substitution.

7.2 Krylov methods

Krylov subspace

A Krylov method is an iterative method for the solution of the system Az =
b based on, for each iteration, finding an approximation z*) ~ z = A='b in
a Krylov subspace Ky, spanned by the vectors b, Ab, ..., A¥~1b, that is

K = (b, Ab, ..., A¥=1D). (7.23)

The basis for Krylov methods is that, by the Cayley-Hamilton theorem,
the inverse of a matrix A~! is a linear combination of its powers A*, which
is also expressed in (7.15).
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GMRES

The idea of GMRES (generalized minimal residuals) is that, at each step k
of the iteration, find the vector 2 € K, that minimizes the norm of the
residual r®) = b — Az®)  which corresponds to the least squares problem
min ||b— Az® . (7.24)
:E(k')GICk
But instead of expressing the approximation z(*) as a linear combination

of the Krylov vectors b, Ab, ..., A¥='b, which leads to an unstable algorithm,
we construct an orthonormal basis {¢;}_, for Ky, such that

le - <q17 q2, .-, Qk>7 (725>

with @ the n x k matrix with the basis vectors ¢; as columns.

Thus we can express the approximation as *) = Qy, with y € R a
vector with the coordinates of z(®), so that the least squares problem take
the form

min [|b — AQxy||- (7.26)
yERE

The Arnoldi iteration constructs a partial similarity transformation of
A into an Hessenberg matriz H;, € RFHIXE

AQy, = Qui1 Hy, (7.27)
that is
11 - Qip hip - hag
: : qi | - | gk i qi1 | - | Gk+1 ha1
- )
An1 - Qpp thrlk

and multiplication of (7.26) by Q;{H does not change the norm, so that the
least squares problem takes the form,

. T r
min 1Qr+1b — Hiyll, (7.28)

where we note that since ¢ = b/||b|, we have that QF ;b = ||blle; with

e1 = (1,0, ...,0)T the first vector in the standard basis in R*"! so that
min [|[|b]ler — Hyyll, (7.29)
y€ERK

which is the least squares problem we solve for y at each iteration k, to get
k) =@
xZ kY.
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Algorithm 7: GMRES
I
while ||+®|/||r®|| > TOL do
Arnoldi iteration — Q, H, > partial similarity transform

min, g |[|6]ler — Hyyl| > least squares problem
z*) = Qry > construct solution
end

Conjugate Gradient method

For a symmetric positive definite matrix A, we can define the A-norm of a

vector z € R", as
|z)|a = (z, Az)'/?, (7.30)

with (+,-) the ly-norm. The Conjugate Gradient method (CG) is based on
minimization of the error e®) =z — x(k) in the A- norm, or equivalently, by
(7.3), minimization of the residual r®*) = b — Az in the A~'-norm,

He(k)”A _ (e(k)’Ae(k))lm _ (€(k),r( ))1/2 (A 1,.(k) T )>1/2 — Hr(k)HA,l,

to compare to GMRES where the residual is minimized in the ly-norm.
Further, to solve the minimization problem in CG we do not solve a least
squares problem over the Krylov subspace K, but instead we iteratively
construct a search direction p®*) and a step length o'® to find the new
approximate solution z*) from the previous iterate z*~1. In particular,
this means that we do not have to store the Krylov basis.

Algorithm 8: Conjugate Gradient method
2@ =0, r© =p, p(k) — 1(0)
While |=®| /||| > TOL do

© = [lr*=D /llp*= VL4 > step length
x(k) = 21 4 o®) plk=1) > approximate solution
r(k) = k=1 — o(F) gpk=1) > residual
= [lr®|/||r =1 > improvement
p(k) = r(k) 4 gR)pk=1) > search direction

end

The key to the success of the CG method is that the residuals are mu-

tually orthogonal, '
(r®, Uy =0, Vj <k, (7.31)
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and that the search directions are A-conjugate,
(W, p)a =0, Vj <k, (7.32)

where (-, )4 is the weighted inner product, defined for symmetric positive
definite matrices as

(x,y)a = 2T Ay = (Ay)Tx =yl ATy = yT Az = (y,x)a, (7.33)

where we note that (-, -)4 induces the A-norm,

|24 = (z,2)5>, (7.34)

which is also referred to as the energy norm for the equation Az = b.

Theorem 12 (CG characteristics). For the CG method applied to the equa-
tion Ax = b, with A an n X n symmetric positive definite matriz, the or-
thogonality relations (7.31) and (7.32) are true, and

Ki = (b Ab, ..., A1) = (20 2@ %)
<p(0)’p(1)7 cen p(k71)> — <T(O), /r-(l)7 cen r(k71)>

)

with the approzimate solutions x| search directions p*) and residuals r*
constructed from Algorithm 8. Further, ¥ is the unique point in K, that
minimizes ||e®|| 4, and the convergence is monotonic, that is

le® L < [l D a, (7.35)

with e®) =0 for some k < n.



