
Chapter 6

Eigenvalues and eigenvectors

We review the basic properties of eigenvalues and eigenvectors of a matrix,
and we present an algorithm for computational approximation in the case
of real symmetric matrices.

6.1 Eigenvalues and eigenvectors

Complex vector spaces

In this section we change the focus from real vector spaces to complex vector
spaces. We let z 2 C denote a complex scalar, with z̄ the complex conjugate
of z.

The complex vector space Cn is defined by the basic operations of com-
ponentwise addition and scalar multiplication of complex numbers, and with
the transpose of a vector x 2 Cn replaced by the adjoint x⇤, corresponding
to the transpose with the imaginary parts negated. Similarly, the adjoint
of a complex m ⇥ n matrix A = (a

ij

) is the n ⇥ m matrix A⇤ = (ā
ji

). If
A = A⇤ the matrix A is Hermitian, and if AA⇤ = A⇤A it is normal.

The inner product of x, y 2 Cn is defined by

(x, y) = x⇤y =
nX

i=i

x̄
i

y
i

, (6.1)

with the associated norm for x 2 Cn,

kxk = (x, x)1/2. (6.2)
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Matrix spectrum and eigenspaces

We now consider a square matrix A 2 Cn⇥n acting on a complex vector
space Cn. An eigenvector of A is a nonzero vector x 2 Cn, such that

Ax = �x, (6.3)

with � 2 C the corresponding eigenvalue. The subspace of Cn spanned by
the eigenvectors corresponding to �, together with the zero vector, is an
eigenspace E

�

, and the set of all eigenvalues {�
j

}n
j=1 is the spectrum of A,

denoted by ⇤(A). The sum and the product of all eigenvalues are related
to the trace and the determinant of A as

det(A) =
nY

j=1

�
j

tr(A) =
nX

j=1

�
j

. (6.4)

The eigenspace E
�

is an invariant subspace under A, so that AE
�

✓ E
�

,
and dim(E

�

) is the number of linearly independent eigenvectors correspond-
ing to the eigenvalue �, known as the geometric multiplicity of �.

We have that the eigenspace E
�

= null(�I � A), since (�I � A)x = 0,
and thus for a nonempty eigenspace E

�

, �I�A is a singular matrix, so that

det(�I � A) = 0. (6.5)

Characteristic polynomial

The characteristic polynomial of the matrix A 2 Cn⇥n, is the degree n
polynomial

p
A

(z) = det(zI � A), (6.6)

with z 2 C. For � an eigenvalue of A, we thus have that

p
A

(�) = 0, (6.7)

and by the fundamental theorem of algebra we can express p
A

(�) as

p
A

(�) = (z � �1)(z � �2) · · · (z � �
n

), (6.8)

where each �
j

is an eigenvalue of A, not necessary unique. The multiplicity
of each eigenvalue � as a root to the equation p

A

(�) = 0 is the algebraic
multiplicity of �, where an eigenvalue is said to be simple if its algebraic
multiplicity is 1. The algebraic multiplicity of an eigenvalue � is at least as
great as its geometric multiplicity.
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Eigenvalue decompositions

A defective matrix is a matrix which has one or more defective eigenval-
ues, where a defective eigenvalue is an eigenvalue for which its algebraic
multiplicity exceeds its geometric multiplicity.

Theorem 5 (Eigenvalue decomposition). Each nondefective matrix A 2
Cn⇥n has an eigenvalue decomposition

A = X⇤X�1, (6.9)

where X 2 Cn⇥n is a nonsingular matrix with the eigenvectors of A as
column vectors, and where ⇤ 2 Cn⇥n is diagonal matrix with the eigenvalues
of A on the diagonal.

We also say that a nondefective matrix is diagonalizable. Given that the
factorization (6.9) exits, we have that

AX = X⇤, (6.10)

which expresses (6.3) as
Ax

j

= �
j

x
j

, (6.11)

with �
j

the jth diagonal entry of ⇤, and x
j

the jth column of X.
For some matrices eigenvectors can be chosen to be pairwise orthogonal,

so that a matrix A is unitary diagonalizable, that is

A = Q⇤Q⇤, (6.12)

with Q 2 Cn⇥n an orthogonal matrix with orthonormal eigenvectors of A
as column vectors, and ⇤ 2 Cn⇥n a diagonal matrix with the eigenvalues of
A on the diagonal.

Theorem 6. A matrix is unitary diagonalizable if and only if it is normal.

Hermitian matrices have real eigenvalues, and thus in the particular
case of a real symmetric matrix, no complex vector spaces are needed to
characterize the matrix spectrum and eigenspaces.

Theorem 7. An Hermitian matrix is unitary diagonalizable with real eigen-
values.

Irrespectively if the matrix is nondefective or Hermitian, any square
matrix always has a Schur factorization, with the diagonal matrix replaced
by an upper triangular matrix.
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Theorem 8 (Schur factorization). For every square matrix A there exists
a Schur factorization

A = QTQ⇤, (6.13)

where Q is an orthogonal matrix, and T is an upper triangular matrix with
the eigenvalues of A on the diagonal.

More generally, if X 2 Cn⇥n is nonsingular, the map A 7! X�1AX is a
similarity transformation of A, and we say that two matrices A and B are
similar if there exists a similarity transformation such that B = X�1AX.

Theorem 9. Two similar matrices have the same eigenvalues with the same
algebraic and geometric multiplicity.

6.2 Eigenvalue algorithms

QR algorithm

To compute the eigenvalues of a matrix A, one may seek the roots of the
characteristic polynomial. Although, for a large matrix polynomial root
finding is expensive and unstable. Instead the most e�cient algorithms are
based on computing eigenvalues and eigenvectors by constructing one of the
factorizations (6.9), (6.12) or (6.13).

We now present the QR algorithm, in which a Schur factorization (6.13)
of a matrix A is constructed from successive QR factorizations.

Algorithm 4: QR algorithm

A(0) = A
for k = 1, 2, ... do

Q(k)R(k) = A(k�1)

Ak = R(k)Q(k)

end

We note that for each iteration A(k) of the algorithm, we have that

A(k) = R(k)Q(k) = (Q(k))�1A(k�1)Q(k), (6.14)

so that A(k) and A(k�1) are similar, and thus have the same eigenvalues.
Under suitable assumptions Ak will converge to an upper triangular matrix,
or in the case of a Hermitian matrix a diagonal matrix, with the eigenvalues
on the diagonal.



6.2. EIGENVALUE ALGORITHMS 53

The basic QR algorithm can be accelerated: (i) by Householder reflectors
to reduce the initial matrix A(0) to Hessenberg form, that is a matrix with
zeros below the first subdiagonal (or in the case of an Hermitian matrix
a tridiagonal form), (ii) by introducing a shift to instead of A(k) factorize
the matrix A(k) � µ(k)I, which has identical eigenvectors, and where µ(k)

an eigenvalue estimate, and (iii) if any o↵-diagonal element is close to zero,
both o↵-diagonal elements are zeroed out to deflate the matrix A(k) into
submatrices on which the QR algorithm is then applied.

Rayleigh quotient

To simplify the presentation, in the rest of this section we restrict attention
to matrices that are real and symmetric, for which all eigenvalues �

j

are
real and the corresponding eigenvectors q

j

are orthonormal.
We now consider the question: given a vector x 2 Rn, what is the real

number ↵ 2 R that best approximate an eigenvalue of A in the sense that
kAx� ↵xk is minimized?

If x = q
j

is an eigenvector of A, then ↵ = �
j

is the corresponding
eigenvalue. If not, ↵ is the solution to the n⇥ 1 least squares problem

min
↵2R

kAx� ↵xk, (6.15)

for which the normal equations are given as

xTAx = xT↵x. (6.16)

With ↵ = r(x), we define the Rayleigh quotient as

r(x) =
xTAx

xTx
, (6.17)

where r(x) is an approximation of an eigenvalue �
j

, if x is close to the
eigenvector q

j

. In fact, r(x) converges quadratically to r(q
j

) = �
j

, that is

r(x)� r(q
j

) = O(kx� q
j

k2), (6.18)

as x ! q
j

.

Power iteration

For a real symmetric n ⇥ n matrix A, the eigenvectors {q
j

}n
j=1 form an

orthonormal basis for Rn so that we can express any vector v 2 Rn in terms
of the eigenvectors,

v =
nX

j=1

↵
j

q
j

, (6.19)
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with the coordinates ↵
j

= (v, q
j

). Further, we can express the map v 7! Av
in terms of the corresponding eigenvalues �

j

, as

Av =
nX

j=1

↵
j

Aq
j

=
nX

j=1

↵
j

�
j

q
j

, (6.20)

and thus the map amounts to a scaling of each eigenvector q
j

by �
j

. If
iterated, this map gives

Akv =
nX

j=1

↵
j

Akq
j

=
nX

j=1

↵
j

�k

j

q
j

, (6.21)

so that each eigenvector �k

j

q
j

of Ak converges to zero if |�
j

| < 1, or infinity
if |�

j

| > 1.
Now assume that ↵1 = (v, q1) 6= 0, and that the eigenvalues of A are

ordered such that

|�1| > |�2| > · · · > |�
n

|, (6.22)

where we say that �1 is the dominant eigenvalue, and q1 the dominant
eigenvector. Thus |�

j

/�1| < 1 for all j, which implies that

(�
j

/�1)
k ! 0, (6.23)

as k ! 1. We can write

Akv = �k

1(↵1q1 +
nX

j=2

↵
j

(�
j

/�1)
kq

j

), (6.24)

and thus the approximation

Akv ⇡ �k

1↵1q1, (6.25)

improves as k increases. That is, Akv approaches a multiple of the eigen-
vector q

j

, which can be obtained by normalizating, so that

v(k) ⌘ Akv/kAkvk ⇡ q
j

, (6.26)

from which an approximation of the corresponding eigenvalue can be ob-
tained by the Rayleigh quotient, which leads us to power iteration.
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Algorithm 5: Power iteration

v(0) such that kv(0)k = 1
for k = 1, 2, ... do

w = Av(k�1) . apply A
v(k) = w/kwk . normalize

�(k) = (v(k))TAv(k) . Raylegh quotient

end

Inverse iteration

The convergence of the Power iteration to the dominant eigenvector is linear
by a constant factor |�2/�1|, whereas the convergence to the dominant eigen-
value is quadratic in the same factor, due to the convergence of Rayleigh
quotient.

E�ciency of the algorithm thus depends on the size of the factor |�2/�1|.
The idea of inverse iteration, is to apply power iteration to the matrix
(A� µI)�1, with eigenvalues {(�

j

� µ)�1} and with the same eigenvectors
as A, since

Av = �v , (A� µI)v = (�� µ)v , (�� µ)�1v = (A� µI)�1v. (6.27)

With µ an approximation of �
j

, the eigenvalue (�
j

�µ)�1 can be expected
to be dominant and much larger than the other eigenvalues, which results
in an accelerated convergence of power iteration.

Rayleigh quotient iteration is inverse iteration where µ is updated to
the eigenvalue approximation of the previous step of the iteration, and the
convergence to an eigenvalue/eigenvector pair is cubic.

Algorithm 6: Rayleigh quotient iteration

v(0) such that kv(0)k = 1
�(0) = (v(0))TAv(0)

for k = 1, 2, ... do
Solve (A� �(k�1))w = v(k�1) for w . apply (A� �(k�1)I)�1

v(k) = w/kwk . normalize

�(k) = (v(k))TAv(k) . Raylegh quotient

end
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The QR algorithm as a power iteration

We now revisit the QR algorithm. Let Q(k) and R(k) be the matrices gen-
erated from the (unshifted) QR algorithm, then the matrix products

Q(k) = Q(1)Q(2) · · ·Q(k), (6.28)

and
R(k) = R(k)R(k�1) · · ·R(1), (6.29)

correspond to a QR factorization of the kth power of A,

Ak = Q(k)R(k), (6.30)

which can be proven by induction.
That is, the QR algorithm constructs successive orthonormal bases for

the powers Ak, thus functioning like a power iteration that simultaneously
iterates on the whole set of approximate eigenvectors.

Further, the diagonal elements of the kth iterate A(k) are the Rayleigh
quotients of A corresponding to the column vectors of Q(k),

A(k) = (Q(k))TAQ(k), (6.31)

and thus the diagonal elements of A(k) converges (quadratically) to the
eigenvalues of A.

With the accelerations (i)-(iii) the QR algorithm exhibit cubic converge
rate in both eigenvalues and eigenvectors.


