Chapter 8

Nonlinear algebraic equations

8.1 Nonlinear scalar equation

Fixed point iteration

We seek the solution $x \in I = [a, b] \subset \mathbb{R}$ of the equation

$$f(x) = 0, \tag{8.1}$$

with $f : I \to \mathbb{R}$ a nonlinear function, for which we can formulate the following fixed point iteration:

$$x^{(k+1)} = g(x^{(k)}) = x^{(k)} + \alpha f(x^{(k)})$$
(8.2)

The fixed point iteration (8.2) converges to a unique solution x = g(x), corresponding to f(x) = 0, if the function $g : I \to I$ is a *contraction* mapping, meaning that there exits a constant $L_g < 1$, such that

$$|g(x) - g(y)| \le L_g |x - y|, \tag{8.3}$$

for all $x, y \in I$, where L_g is the Lipschitz constant of g(x), a Lipschitz continuous function for $x \in I$.

Convergence of the fixed point iteration (8.2) is proven similar to the case of a linear system of equations (7.10). For any k > 1, we have that

$$|x^{(k+1)} - x^{(k)}| = |g(x^{(k)}) - g(x^{(k-1)})| \le L_g |x^{(k)} - x^{(k-1)}| \le L_g^k |x^{(1)} - x^{(0)}|,$$

and for m > n,

$$\begin{split} |x^{(m)} - x^{(n)}| &= |x^{(m)} - x^{(m-1)}| + \ldots + |x^{(n+1)} - x^{(n)}| \\ &\leq (L_g^{m-1} + \ldots + L_g^n) \, |x^{(1)} - x^{(0)}|, \end{split}$$

so that for $L_q < 1$, we have that

$$\lim_{n \to \infty} |x^{(m)} - x^{(n)}| = 0, \tag{8.4}$$

which implies that there exists an $x \in \mathbb{R}$ such that

$$x = \lim_{n \to \infty} x^{(n)},\tag{8.5}$$

since $\{x^{(n)}\}_{n=1}^{\infty}$ is a Cauchy sequence in the complete space \mathbb{R} .

Uniqueness follows from assuming that there exists another solution $y \in \mathbb{R}$ such that y = g(y), which leads to a contradiction, since

$$|x - y| = |g(x) - g(y)| \le L_g |x - y| < |x - y|.$$
(8.6)

Thus x is the unique solution to the equation x = g(x).

Newton's method

The analysis above suggests that (8.2) converges linearly with the Lipschitz constant L_g , since

$$|x - x^{(k+1)}| = |g(x) - g(x^{(k)})| < L_g |x - x^{(k)}|$$
(8.7)

so that the error $e^{(k)} = x - x^{(k)}$ decreases linearly as $|e^{(k+1)}| < L_g|e^{(k)}|$.

Although, by the choice $\alpha = -f'(x^{(k)})^{-1}$, the fixed point iteration (8.2) exhibits quadratic converge for $x^{(k)}$ close to x, the exact solution to the equation f(x) = 0. This is Newton's method.

Algorithm 9: Newton's method	
Given initial approximation $x^{(0)}$	
while $ f(x^{(k)}) \ge TOL$ do	
$x^{(k+1)} = x^{(k)} - f'(x^{(k)})^{-1}f(x^{(k)})$	
end	

The quadratic convergence of Newton's method follows from Taylor's formula, with f(x) expanded around $x^{(k)}$, with $\xi \in I$,

$$0 = f(x) = f(x^{(k)}) + f'(x^{(k)})(x - x^{(k)}) + \frac{1}{2}f''(\xi)(x - x^{(k)})^2.$$
(8.8)

We divide by $f'(x^{(k)})$ to get

$$x - (x^{(k)} - f'(x^{(k)})^{-1} f(x^{(k)})) = -\frac{1}{2} f'(x^{(k)})^{-1} f''(\xi) (x - x^{(k)})^2, \qquad (8.9)$$

so that for the error $e^{(k)} = x - x^{(k)}$,

$$|e^{(k+1)}| = \frac{1}{2} |f'(x^{(k)})^{-1} f''(\xi)| |e^{(k)}|^2, \qquad (8.10)$$

which displays the quadratic convergence for $x^{(k)}$ close to x.

8.2 Systems of nonlinear equations

Fixed point iteration for nonlinear systems

Now consider systems of nonlinear equations: find $x = (x_1, ..., x_n)^T \in \mathbb{R}^n$, such that

$$f(x) = 0, (8.11)$$

with $f = (f_1, ..., f_n)^T : \mathbb{R}^n \to \mathbb{R}^n$. We can formulate a fixed point iteration $x^{(k+1)} = g(x^{(k)})$, with $g : \mathbb{R}^n \to \mathbb{R}^n$, just as in the case of the scalar problem.

Algorithm	10:	Newton's	method	for	systems	of	nonlinear	equations
					•/			

Given initial approximation $x^{(0)}$ while $||f(x^{(k)})|| \ge TOL$ do $| x^{(k+1)} = x^{(k)} + \alpha f(x^{(k)})$ end

Existence of a unique solution to the algorithm follows by the Banach fixed point theorem.

Theorem 13 (Banach fixed point theorem). The fixed point iteration of Aglorithm 10 converges to a unique solution if $||1 + \alpha L_f|| < 1$, with L_f the Lipschitz constant of the function f(x).

Proof. For k > 1 we have that

$$\begin{aligned} \|x^{(k+1)} - x^{(k)}\| &= \|x^{(k)} - x^{(k-1)} + \alpha(f(x^{(k)}) - f(x^{(k-1)}))\| \\ &\leq (1 + \alpha L_f) \|x^{(k)} - x^{(k-1)}\| \le (1 + \alpha L_f)^k \|x^{(1)} - x^{(0)}\|, \end{aligned}$$

and for m > n,

$$\begin{aligned} \|x^{(m)} - x^{(n)}\| &= \|x^{(m)} - x^{(m-1)}\| + \dots + \|x^{(n+1)} - x^{(n)}\| \\ &\leq ((1 + \alpha L_f)^{m-1} + \dots + (1 + \alpha L_f)^n) \|x^{(1)} - x^{(0)}\| \end{aligned}$$

For $(1 + \alpha L_f) < 1$, $\{x^{(n)}\}_{n=1}^{\infty}$ is a Cauchy sequence since $||x^{(m)} - x^{(n)}|| \to 0$, for $n \to \infty$, which implies that there exists an $x \in \mathbb{R}^n$ such that

$$x = \lim_{n \to \infty} x^{(n)},\tag{8.12}$$

since \mathbb{R}^n is a complete vector space. Uniqueness follows from assuming that there exists another solution $y \in \mathbb{R}^n$ such that f(y) = 0, which leads to a contradiction, since

$$||x - y|| = ||x - y + \alpha (f(x) - f(y))|| \le (1 + \alpha L_f) ||x - y|| < ||x - y||.$$
(8.13)
Thus x is the unique solution to the equation $f(x) = 0.$

Newton's method for nonlinear systems

The Jacobian matrix f'(x) is defined as

$$f'(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix},$$
(8.14)

which we use to formulate Newton's method for systems of equations.

Algorithm 11: Newton's method for syste	ms of nonlinear equations
Given initial approximation $x^{(0)}$	
while $ f(x^{(k)}) \ge TOL$ do	
Solve $f'(x^{(k)})\Delta x^{(k+1)} = -f(x^{(k)})$	$ hinspace$ solve for $\Delta x^{(k+1)}$
$x^{(k+1)} = x^{(k)} + \Delta x^{(k+1)}$	$ hinspace$ update by $\Delta x^{(k+1)}$
end	

The quadratic convergence of Newton's method follows from Taylor's formula in \mathbb{R}^n , with f(x) expanded around $x^{(k)}$,

$$0 = f(x) = f(x^{(k)}) + f'(x^{(k)})(x - x^{(k)}) + \frac{1}{2}(x - x^{(k)})^T f''(\xi)(x - x^{(k)}),$$

where $f''(x^{(k)}$ is the Hessian. We have that

$$x - (x^{(k)} - f'(x^{(k)})^{-1} f(x^{(k)})) = -\frac{1}{2} f'(x^{(k)})^{-1} (x - x^{(k)})^T f''(\xi) (x - x^{(k)}),$$

with $f'(x^{(k)})^{-1}$ the inverse of the Jacobian, so that,

$$\|e^{(k+1)}\| = \frac{1}{2} \|f'(x^{(k)})^{-1} f''(\xi)\| \|e^{(k)}\|^2,$$
(8.15)

for the error $e^{(k)} = x - x^{(k)}$, which shows quadratic convergence for $x^{(k)}$ close to x.