Chapter 8

Nonlinear algebraic equations

8.1 Nonlinear scalar equation

Fixed point iteration

We seek the solution $x \in I=[a, b] \subset \mathbb{R}$ of the equation

$$
\begin{equation*}
f(x)=0 \tag{8.1}
\end{equation*}
$$

with $f: I \rightarrow \mathbb{R}$ a nonlinear function, for which we can formulate the following fixed point iteration:

$$
\begin{equation*}
x^{(k+1)}=g\left(x^{(k)}\right)=x^{(k)}+\alpha f\left(x^{(k)}\right) \tag{8.2}
\end{equation*}
$$

The fixed point iteration (8.2) converges to a unique solution $x=g(x)$, corresponding to $f(x)=0$, if the function $g: I \rightarrow I$ is a contraction mapping, meaning that there exits a constant $L_{g}<1$, such that

$$
\begin{equation*}
|g(x)-g(y)| \leq L_{g}|x-y|, \tag{8.3}
\end{equation*}
$$

for all $x, y \in I$, where L_{g} is the Lipschitz constant of $g(x)$, a Lipschitz continuous function for $x \in I$.

Convergence of the fixed point iteration (8.2) is proven similar to the case of a linear system of equations (7.10). For any $k>1$, we have that

$$
\left|x^{(k+1)}-x^{(k)}\right|=\left|g\left(x^{(k)}\right)-g\left(x^{(k-1)}\right)\right| \leq L_{g}\left|x^{(k)}-x^{(k-1)}\right| \leq L_{g}^{k}\left|x^{(1)}-x^{(0)}\right|
$$

and for $m>n$,

$$
\begin{aligned}
\left|x^{(m)}-x^{(n)}\right| & =\left|x^{(m)}-x^{(m-1)}\right|+\ldots+\left|x^{(n+1)}-x^{(n)}\right| \\
& \leq\left(L_{g}^{m-1}+\ldots+L_{g}^{n}\right)\left|x^{(1)}-x^{(0)}\right|,
\end{aligned}
$$

so that for $L_{g}<1$, we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|x^{(m)}-x^{(n)}\right|=0 \tag{8.4}
\end{equation*}
$$

which implies that there exists an $x \in \mathbb{R}$ such that

$$
\begin{equation*}
x=\lim _{n \rightarrow \infty} x^{(n)}, \tag{8.5}
\end{equation*}
$$

since $\left\{x^{(n)}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in the complete space \mathbb{R}.
Uniqueness follows from assuming that there exists another solution $y \in \mathbb{R}$ such that $y=g(y)$, which leads to a contradiction, since

$$
\begin{equation*}
|x-y|=|g(x)-g(y)| \leq L_{g}|x-y|<|x-y| . \tag{8.6}
\end{equation*}
$$

Thus x is the unique solution to the equation $x=g(x)$.

Newton's method

The analysis above suggests that (8.2) converges linearly with the Lipschitz constant L_{g}, since

$$
\begin{equation*}
\left|x-x^{(k+1)}\right|=\left|g(x)-g\left(x^{(k)}\right)\right|<L_{g}\left|x-x^{(k)}\right| \tag{8.7}
\end{equation*}
$$

so that the error $e^{(k)}=x-x^{(k)}$ decreases linearly as $\left|e^{(k+1)}\right|<L_{g}\left|e^{(k)}\right|$.
Although, by the choice $\alpha=-f^{\prime}\left(x^{(k)}\right)^{-1}$, the fixed point iteration (8.2) exhibits quadratic converge for $x^{(k)}$ close to x, the exact solution to the equation $f(x)=0$. This is Newton's method.

```
Algorithm 9: Newton's method
    Given initial approximation \(x^{(0)}\)
    while \(\left|f\left(x^{(k)}\right)\right| \geq T O L\) do
        \(x^{(k+1)}=x^{(k)}-f^{\prime}\left(x^{(k)}\right)^{-1} f\left(x^{(k)}\right)\)
    end
```

The quadratic convergence of Newton's method follows from Taylor's formula, with $f(x)$ expanded around $x^{(k)}$, with $\xi \in I$,

$$
\begin{equation*}
0=f(x)=f\left(x^{(k)}\right)+f^{\prime}\left(x^{(k)}\right)\left(x-x^{(k)}\right)+\frac{1}{2} f^{\prime \prime}(\xi)\left(x-x^{(k)}\right)^{2} . \tag{8.8}
\end{equation*}
$$

We divide by $f^{\prime}\left(x^{(k)}\right)$ to get

$$
\begin{equation*}
x-\left(x^{(k)}-f^{\prime}\left(x^{(k)}\right)^{-1} f\left(x^{(k)}\right)\right)=-\frac{1}{2} f^{\prime}\left(x^{(k)}\right)^{-1} f^{\prime \prime}(\xi)\left(x-x^{(k)}\right)^{2}, \tag{8.9}
\end{equation*}
$$

so that for the error $e^{(k)}=x-x^{(k)}$,

$$
\begin{equation*}
\left|e^{(k+1)}\right|=\frac{1}{2}\left|f^{\prime}\left(x^{(k)}\right)^{-1} f^{\prime \prime}(\xi)\right|\left|e^{(k)}\right|^{2} \tag{8.10}
\end{equation*}
$$

which displays the quadratic convergence for $x^{(k)}$ close to x.

8.2 Systems of nonlinear equations

Fixed point iteration for nonlinear systems

Now consider systems of nonlinear equations: find $x=\left(x_{1}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n}$, such that

$$
\begin{equation*}
f(x)=0, \tag{8.11}
\end{equation*}
$$

with $f=\left(f_{1}, \ldots, f_{n}\right)^{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. We can formulate a fixed point iteration $x^{(k+1)}=g\left(x^{(k)}\right)$, with $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, just as in the case of the scalar problem.

```
Algorithm 10: Newton's method for systems of nonlinear equations
    Given initial approximation \(x^{(0)}\)
    while \(\left\|f\left(x^{(k)}\right)\right\| \geq T O L\) do
        \(x^{(k+1)}=x^{(k)}+\alpha f\left(x^{(k)}\right)\)
    end
```

Existence of a unique solution to the algorithm follows by the Banach fixed point theorem.

Theorem 13 (Banach fixed point theorem). The fixed point iteration of Aglorithm 10 converges to a unique solution if $\left\|1+\alpha L_{f}\right\|<1$, with L_{f} the Lipschitz constant of the function $f(x)$.

Proof. For $k>1$ we have that

$$
\begin{aligned}
\left\|x^{(k+1)}-x^{(k)}\right\| & =\left\|x^{(k)}-x^{(k-1)}+\alpha\left(f\left(x^{(k)}\right)-f\left(x^{(k-1)}\right)\right)\right\| \\
& \leq\left(1+\alpha L_{f}\right)\left\|x^{(k)}-x^{(k-1)}\right\| \leq\left(1+\alpha L_{f}\right)^{k}\left\|x^{(1)}-x^{(0)}\right\|,
\end{aligned}
$$

and for $m>n$,

$$
\begin{aligned}
\left\|x^{(m)}-x^{(n)}\right\| & =\left\|x^{(m)}-x^{(m-1)}\right\|+\ldots+\left\|x^{(n+1)}-x^{(n)}\right\| \\
& \leq\left(\left(1+\alpha L_{f}\right)^{m-1}+\ldots+\left(1+\alpha L_{f}\right)^{n}\right)\left\|x^{(1)}-x^{(0)}\right\| .
\end{aligned}
$$

For $\left(1+\alpha L_{f}\right)<1,\left\{x^{(n)}\right\}_{n=1}^{\infty}$ is a Cauchy sequence since $\left\|x^{(m)}-x^{(n)}\right\| \rightarrow 0$, for $n \rightarrow \infty$, which implies that there exists an $x \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
x=\lim _{n \rightarrow \infty} x^{(n)} \tag{8.12}
\end{equation*}
$$

since \mathbb{R}^{n} is a complete vector space. Uniqueness follows from assuming that there exists another solution $y \in \mathbb{R}^{n}$ such that $f(y)=0$, which leads to a contradiction, since

$$
\begin{equation*}
\|x-y\|=\|x-y+\alpha(f(x)-f(y))\| \leq\left(1+\alpha L_{f}\right)\|x-y\|<\|x-y\| \tag{8.13}
\end{equation*}
$$

Thus x is the unique solution to the equation $f(x)=0$.

Newton's method for nonlinear systems

The Jacobian matrix $f^{\prime}(x)$ is defined as

$$
f^{\prime}(x)=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \tag{8.14}\\
\vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right]
$$

which we use to formulate Newton's method for systems of equations.

```
Algorithm 11: Newton's method for systems of nonlinear equations
    Given initial approximation \(x^{(0)}\)
    while \(\left\|f\left(x^{(k)}\right)\right\| \geq T O L\) do
        \(\begin{array}{ll}\text { Solve } f^{\prime}\left(x^{(k)}\right) \Delta x^{(k+1)}=-f\left(x^{(k)}\right) & \triangleright \text { solve for } \Delta x^{(k+1)} \\ x^{(k+1)}=x^{(k)}+\Delta x^{(k+1)} & \triangleright \text { update by } \Delta x^{(k+1)}\end{array}\)
    end
```

The quadratic convergence of Newton's method follows from Taylor's formula in \mathbb{R}^{n}, with $f(x)$ expanded around $x^{(k)}$,

$$
0=f(x)=f\left(x^{(k)}\right)+f^{\prime}\left(x^{(k)}\right)\left(x-x^{(k)}\right)+\frac{1}{2}\left(x-x^{(k)}\right)^{T} f^{\prime \prime}(\xi)\left(x-x^{(k)}\right)
$$

where $f^{\prime \prime}\left(x^{(k)}\right.$ is the Hessian. We have that

$$
x-\left(x^{(k)}-f^{\prime}\left(x^{(k)}\right)^{-1} f\left(x^{(k)}\right)\right)=-\frac{1}{2} f^{\prime}\left(x^{(k)}\right)^{-1}\left(x-x^{(k)}\right)^{T} f^{\prime \prime}(\xi)\left(x-x^{(k)}\right)
$$

with $f^{\prime}\left(x^{(k)}\right)^{-1}$ the inverse of the Jacobian, so that,

$$
\begin{equation*}
\left\|e^{(k+1)}\right\|=\frac{1}{2}\left\|f^{\prime}\left(x^{(k)}\right)^{-1} f^{\prime \prime}(\xi)\right\|\left\|e^{(k)}\right\|^{2} \tag{8.15}
\end{equation*}
$$

for the error $e^{(k)}=x-x^{(k)}$, which shows quadratic convergence for $x^{(k)}$ close to x.

