EP2200 Queuing theory and teletraffic systems

Queuing systems
Little's result
M/M/1

Viktoria Fodor KTH EES

Outline for today and for next lecture

- Recall: Markov chain, birth-death process
- Queuing systems
 - Categories, Kendall notation
 - Markovian queuing systems
- Little's result
- PASTA
- M/M/1 queuing systems

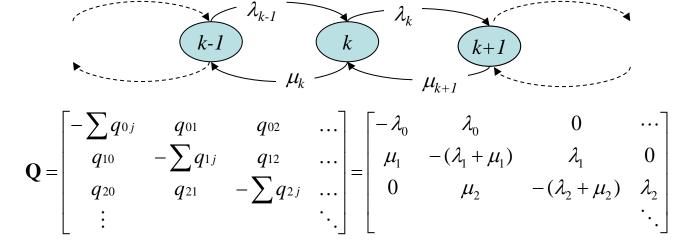
Recall – Continuous time Markov-chains

- Markovian property: next state depends on the present state only
- State transition intensity matrix Q
- Stationary solution: <u>pQ=0</u>, or balance equations
- Pure birth process, Pure death process
 - Transition to neighboring state
 - Exponentially distributed times between events
 - Poisson process
- Birth-death process: Markov chain with transition between neighboring states

Birth-death process

- Continuous time Markov-chain
- Transitions occur only between neighboring states

$$i{\to}i{+}1 \text{ birth with intensity } \lambda_i \\ i{\to}i{-}1 \text{ death with intensity } \mu_i \quad \text{(for } i{>}0\text{)} \\$$



- State holding time length of time spent in a state k
 - Until transition to states k-1 or k+1
 - Minimum of the times to the first birth or first deaths \rightarrow minimum of two Exponentially distributed random variables: $\text{Exp}(\lambda_k + \mu_k)$

B-D process - stationary solution

- Local balance equations, like for general Markov-chains
- Stability: positive solution for \underline{p} (since the MC is irreducible)

Cut 1:
$$\lambda_{k-1} p_{k-1} = \mu_k p_k \implies p_k = \frac{\lambda_{k-1}}{\mu_k} p_{k-1}$$

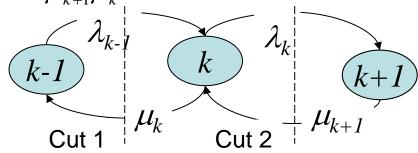
Cut 2:
$$\lambda_k p_k = \mu_{k+1} p_{k+1} \implies p_{k+1} = \frac{\lambda_k}{\mu_{k+1}} p_k = \frac{\lambda_k \lambda_{k-1}}{\mu_{k+1} \mu_k} p_{k-1}$$

•

$$\Rightarrow p_k = \frac{\lambda_0 \cdots \lambda_{k-1}}{\mu_1 \cdots \mu_k} p_0 = \prod_{i=0}^{k-1} \frac{\lambda_i}{\mu_{i+1}} p_0,$$

$$\sum p_k = 1 \implies$$

$$p_0 = \frac{1}{1 + \sum_{k=1}^{\infty} \prod_{i=0}^{k-1} \frac{\lambda_i}{\mu_{i+1}}},$$

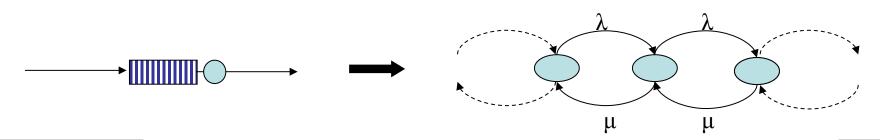


Stationary solution for state independent transition rates:

$$p_k = \left(\frac{\lambda}{\mu}\right)^k p_0, \quad p_0 = 1 - \frac{\lambda}{\mu}$$

Markov-chains and queuing systems

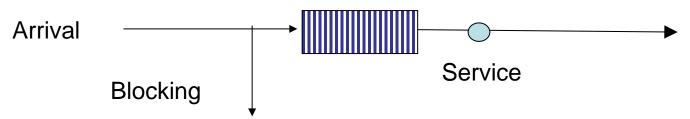
- Why do we like Poisson and B-D processes?
 How are they related to queuing systems?
 - If arrivals in a queuing system can be modeled as Poisson process → also as a pure birth process
 - If services in a queuing systems can be modeled with exponential service times → also as a (pure) death process
 - Then the queuing system can be modeled as a birth-death process



Outline for today and for next lecture

- Recall: Markov chain, birth-death process
- Queuing systems
 - Categories, Kendall notation
 - Markovian queuing systems
- Little's result
- M/M/1 queuing systems

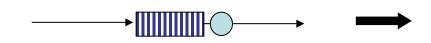
Queuing system: Kendall's notation A/S/m/c/p/O

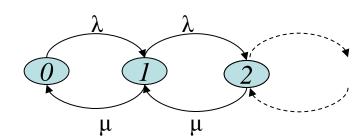


- A: arrival process (distribution of interarrival times)
- S: distribution of the service times
- m: number of servers
- c: system capacity buffer positions and servers included (omitted if infinite)
- p: population generating requests (omitted if infinite)
- O: order of service (omitted if FCFS)
- Inter arrival or service time:
 - M: Markovian (exponentially distributed)
 - D: Deterministic (same known value)
 - E_r : Erlang with r stages (sum of r exponentials)
 - H_k : Hyper exponential with k branches (mix of k exponentials)
 - G: General (but known), some times GI for general, independent

Markovian queuing systems

- State of the queuing system: number of customers in the system
- Markovian queuing system: if the Markovian property holds
 - the next state of the system depends on the present state only
- Interarrival and service times have to be exponential: M/M/*/*
 - arrival: birth process (intensity: λ_i)
 - service: death process (intensity: μ_i)
 - B-D process to model the queuing system
 - State: number of customers in the system
- E.g. M/M/1, $\lambda_i = \lambda$, $\mu_i = \mu$





Markovian queuing systems (M/M/*/*)

- Markovian property holds:
 - -interarrival times are exponential (Poisson process)
 - -service times are exponential
- Poisson arrival process motivation
 - -Models a population of independent customers
 - -Each customer access the system at a low rate
 - -The total arrival process tends towards a Poisson process for a large population
- Exponential service time motivation is not that straightforward...
- Queuing system described with a Markov chain (often B-D)

Group-work

- Can we model these queuing systems with a B-D process?
 - 1. Packets of exponential length are multiplexed from a high number of input ports. The arrival processes at the input ports are Poisson.
 - 2. Packets of fixed length are multiplexed at the same router as in 1. The input process is Poisson.
 - 3. Packets of exponential length are multiplexed and the transmission bandwidth is increased as the queue length increases (dedicated bandwidth for this service). The input process is Poisson.

Queuing system –variables

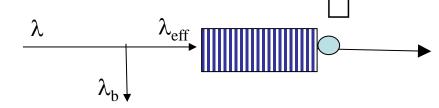
- $p_k(t)$: probability of k customers in the system at time t, stationary p_k
- λ : arrival intensity, average interarrival time $1/\lambda$ (offered traffic)
- x_n : service time requirement of customer n, average x (or \overline{x}) μ : service intensity, $\overline{x} = 1/\mu$
- T_n : time customer n spends in the system (system time), average T W_n : waiting time of customer n, average W Relation: T = W + x
- N(t): number of customers in system at time t, average N $N_q(t)$: number of customers waiting at time t, average N_q $N_s(t)$: number of customers in service at time t, average N_s Relation: $N = N_q + N_s$

Offered load and utilization

- Offered load: $a = \lambda \bar{x} = \lambda/\mu$, (arrival intensity * length of service)
 - is expressed in Erlang (E) [no unit]
 - sometimes denoted by ρ .
- Server utilization in systems with infinite buffer capacity, m servers

$$\rho = \frac{\text{time server occupied}}{\text{total time}} = \frac{\lambda T \, \overline{x}/m}{T} = \frac{\lambda}{m\mu} = \frac{a}{m}$$
 Stability requires $\rho < 1$

- For systems with blocking:
 - -Effective traffic: λ_{eff}
 - -Blocked traffic: λ_b , $\lambda_{eff} + \lambda_b = \lambda$
 - -Effective load: $\lambda_{eff} \overline{x} = \lambda_{eff} / \mu$
 - -Server utilization: $\lambda_{eff} \overline{x}/m = \lambda_{eff}/(m\mu)$



Group work: 2 dentists

- 4 arrivals per hour in average
- 20 minutes "service" in average

Offered load?

Part of time the dentist is busy (utilization)?

Outline for today and for next lecture

- Recall: Markov chain, birth-death process
- Queuing systems
 - Categories, Kendall notation
 - Markovian queuing systems
- Little's result
- M/M/1 queuing systems

Little's result

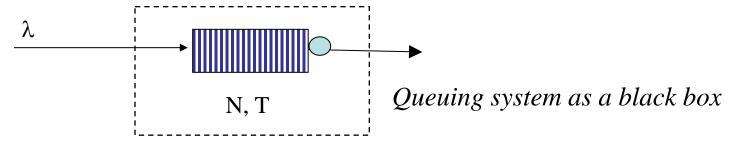
- First for systems without blocking
- The average number of customers in the system is equal to the arrival rate times the average time spent in the system

$$N = \lambda T$$

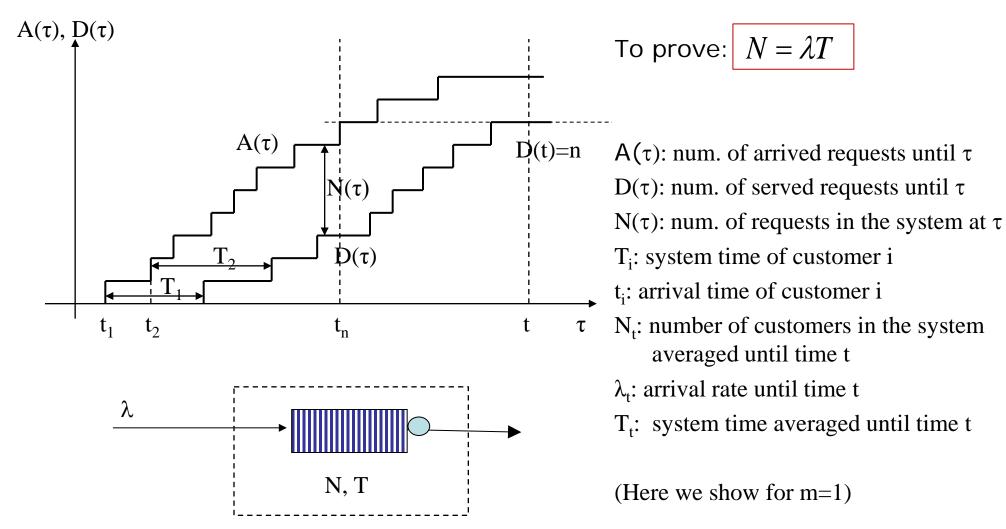
• Likewise $N_q = \lambda W$

$$N_s = \lambda \overline{x}$$

- General result for G/G/m systems
 - applies for all queuing systems we will consider

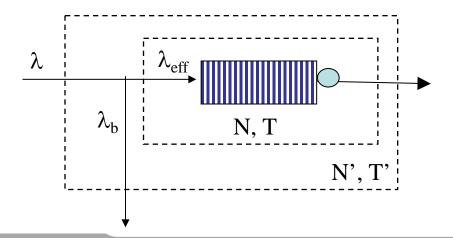


Little's result - justification



Little's result for loss systems

- Some of the requests get blocked
- Little's result holds
 - 1. for the effective traffic (considering the accepted costumers): $N = \lambda_{eff}T$
 - Since Little's result holds for the arrival process "after" the blocking
 - 2. for the offered traffic (considering both the accepted and the blocked costumers: $N=\lambda T'$, where T' is the average system time, including 0 system time for blocked requests, $T' \neq T$
 - Proof below



1:
$$N = \lambda_{eff} T$$

2:
$$N' = N$$

$$T' = \frac{\lambda_b}{\lambda} 0 + \frac{\lambda_{eff}}{\lambda} T$$

$$\Rightarrow \lambda T' = \lambda_{eff} T = N$$

PASTA property

- Poisson Arrivals See Time Average
- Holds for M/*/* queuing systems
- Stationary state probabilities p_k
 - fraction of processes in state k
 - fraction of time the system is in state k (due to ergodicity)
 - P(a random observer finds the system in state k)
- $p_k(t)$: P(system in state k at time t)
- $a_k(t)$: P(costumer arriving at time t finds system in state k)
- $a_k(t) = p_k(t)$
- In steady state: $a_k = p_k$, that is, arriving customers find the system in state k with probability p_k

Queuing systems - summary

- Kendall notation A/S/m/c/p/O
- Markovian (M/M/*/*) systems and B-D processes
- Offered load and utilization
- Little's result: N=λT
- PASTA property for Markovian queuing systems

M/M/1 queuing systems

- Single server, infinite waiting room
- Service times are exponentially distributed (μ)
- Arrival process Poisson (λ)
- The queuing system can be modeled by a homogeneous (time-independent) birth-death process
- Here basic case: state independent arrival and service
- On the recitation: M/M/1 with state dependent arrival and service (λ_i, μ_i)

M/M/1 queuing systems - performance

- 1. State transition diagram
- 2. Stationary state probabilities
 - Condition of stability
- 3. Average number of customers in the system
- 4. Other average measures
- 5. Scheduling discipline?
- 6. Distribution of system time (and waiting time)
- The derivation of these expressions *is* exam material. See your lecture notes, or parts of the Virtamo notes.

M/M/1 queuing systems

- State transition diagram: BD process
- What is the lifetime of a state?
 - Also called holding time
 - Process leaves a state if there is an arrival or a service
 - Exponential interarrival and service time
 - Lifetime: minimum of two independent exponential random variables:

$$P(\tau < t) = 1 - e^{-(\lambda + \mu)t}, \quad \tau = \frac{1}{\lambda + \mu}$$

For state 0: only arrival, no service

$$P(\tau_0 < t) = 1 - e^{-\lambda t}, \quad \tau = \frac{1}{\lambda}$$

Performance results

- The system is in state k with probability $p_k = (1-\rho)\rho^k$
- An arriving customer finds k customers in the system with probability p_k (PASTA)
- Expected number of customers in the system is $N=\rho/(1-\rho)$ —Time measures by Little's law
- Service discipline: state probability and average performance measures do not depend on the service discipline
- System time and waiting time distribution under FIFO

$$P(T < t) = T(t) = 1 - e^{-(\mu - \lambda)t}, t \ge 0$$

$$P(W < t) = W(t) = 1 - \rho e^{-(\mu - \lambda)t}, t \ge 0$$

- Terminology in the Virtamo notes:
 - System time = sojourn time (M/M/* p7-10)

Summary

- Queuing systems
 - Categories, Kendall notation
- Little's result, without and with blocking
- M/M/1 queuing systems and performance results
- Continuation: Markovian queuing systems
 - With blocking
 - With more servers