
Chapter 5

Linear system of equations

In this chapter we study methods for solving linear systems of equations.
That is, we seek a solution in terms of a vector x that satisfies a set of linear
equations that can be formulated in the form of a matrix equation Ax = b.

For a square non-singular matrix A, we construct direct solution meth-
ods based on factorization of the matrix A into a product of matrices that
are easy to invert. In the case of a rectangular matrix A we formulate a
least squares problem, where we seek a solution x that minimizes the norm
of the residual b� Ax.

5.1 Linear system of equations

A linear system of equations can be expressed as the matrix equation

Ax = b, (5.1)

with A a given matrix and b a given vector, for which x is the unknown
solution vector. Given our previous discussion, b can be interpreted as the
image of x under the linear transformation A, or alternatively x can be
interpreted as the coe�cients of b expressed in the column space of A.

For a square non-singular matrix A the solution x can be expressed in
terms of the inverse matrix as x = A�1b. For some matrices this inverse
matrix is easy to construct, such as in the case of a diagonal matrix D =
(d

ij

), for which d
ij

= 0 for all i 6= j. Here the inverse is directly given as
D�1 = (1/d

ij

). Similarly, for an orthogonal matrix Q the inverse is given by
Q�1 = QT . On the other hand, for a general matrix A computation of the
inverse is not straight forward. Instead we seek to transform the general
matrix into matrices which are easy to invert.
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40 CHAPTER 5. LINEAR SYSTEM OF EQUATIONS

We will introduce two factorizations that can be used for solving Ax = b
in the case of A being a general square non-singular matrix; QR factoriza-
tion and LU factorization. Factorization followed by inversion of the fac-
tored matrix is an example of a direct method for solving a linear system of
equations.

We note that to solve the equation we do not have to construct the
inverse matrix explicitly, instead we only need to compute the action of
matrices on a vector, which is important in terms of the memory footprint
of algorithms. Although, the price to pay for matrix factorization is that
the factors of a sparse matrix may not be sparse, so that for large sparse
systems the memory cost may be too high for direct methods. Instead
iterative methods need to be employed.

Apart from diagonal and orthogonal matrices, triangular matrices are
easy to invert by backward and forward substitution.

Triangular matrices

We distinguish between two classes of triangular matrices: a lower trian-
gular matrix L = (l

ij

), with l
ij

= 0 for i < j, and an upper triangular
matrix U = (u

ij

), with u
ij

= 0 for i > j. The product of lower triangular
matrices is lower triangular, and the product of upper triangular matrices
is upper triangular. Similarly, the inverse of a lower triangular matrix is
lower triangular, and the inverse of an upper triangular matrix is upper
triangular.

The equations Lx = b and Ux = b, take the form
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which are solved by forward substitution and backward substitution,
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where both algorithms correspond to ⇠ n2 operations.
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5.2 QR factorization

Classical Gram-Schmidt orthogonalization

For a square matrix A 2 Rn⇥n we denote the successive vector spaces
spanned by its column vectors a

j

as

ha1i ✓ ha1, a2i ✓ ha1, a2, a3i ✓ ... ✓ ha1, ..., ami. (5.2)

Assuming that A has full rank, we now ask if we for each such vector space
can construct an orthonormal basis q

j

such that hq1, ..., qji = ha1, ..., aji, for
all j  n.

Given a
j

, we can successively construct vectors v
j

that are orthogonal
to the spaces hq1, ..., qj�1i, since by (2.13) we have that

v
j

= a
j

�
j�1X

i=1

(a
j

, q
i

)q
i

, (5.3)

for all j = 1, ..., n, where each vector is then normalized to get q
j

= v
j

/kv
j

k.
This is the classical Gram-Schmidt iteration.

Modified Gram-Schmidt orthogonalization

With Q̂
j�1 the n⇥ j � 1 matrix consiting of the orthogonal column vectors

q
i

, we can rewrite (5.3) in terms of an orthogonal projector P
j

,

v
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with Q̂
j�1Q̂

T

j�1 an orthogonal projector onto range(Q̂
j�1), the column space

of Q̂
j�1. The matrix P

j

= I�Q̂
j�1Q̂

T

j�1 is thus an orthogonal projector onto

the space orthogonal to range(Q̂
j�1), with P1 = I. Thus the Gram-Schmidt

iteration can be expressed in terms of the projector P
j

as q
j

= P
j

a
j

/kP
j

a
j

k,
for j = 1, ..., n.

Alternatively, P
j

can be constructed by successive multiplication of pro-
jectors P?qi = I � q

i

qT
i

, orthogonal to each individual vector q
i

, such that

P
j

= P?qj�1 · · ·P?q2P?q1 . (5.4)

The modified Gram-Schmidt iteration corresponds to instead using this for-
mula to construct P

j

, which leads to a more robust algorithm than the
classical Gram-Schmidt iteration.
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Algorithm 1: Modified Gram-Schmidt iteration

for i = 1 to n do
v
i

= a
i

end
for i = 1 to n do

r
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= kv
i

k
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/r
ii

for j = 1 to i+ 1 do
r
ij

= qT
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v
j

v
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end
end

QR factorization

By introducing the notation r
ij

= (a
j

, q
i

) and r
ii

= ka
j

�
P

j�1
i=1 (aj, qi)qik,

we can rewrite the Gram-Schmidt iteration (5.3) as

a1 = r11q1

a2 = r12q1 + r22q2 (5.5)
...

a
n

= r1nq1 + ...+ r2nqn

which corresponds to the QR factorization A = QR, with Q an orthogonal
matrix and R an upper triangular matrix, that is
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Existence and uniqueness of the QR factorization of a non-singular matrix
follows by construction from Algorithm 1.

The modified Gram-Schmidt iteration of Algorithm 1 corresponds to
successive multiplication of upper triangular matrices R

k

on the right of
the matrix A, such that the resulting matrix Q is an orthogonal matrix,

AR1R2 · · ·Rn

= Q, (5.6)

and with the notation R�1 = R1R2 · · ·Rn

, the matrix R = (R�1)�1 is also
an upper triangular matrix.
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Householder QR factorization

Whereas the Gram-Schmidt iteration amounts to a triangular orthogonal-
ization of the matrix A, we may alternatively formulate an algorithm for an
orthogonal triangularization by successive application of certain orthogonal
matrices Q

k

,
Q

n

...Q2Q1A = R, (5.7)

where the matrix product Q = Q
n

...Q2Q1 also is orthogonal. In the House-
holder algorithm, the orthogonal matrices are chosen on the form

Q
k

=


I 0
0 F

�
, (5.8)

with I the (k�1)⇥(k�1) identity matrix, and F an (n�k+1)⇥(n�k+1)
orthogonal matrix which is constructed to introduce zeros in the kth column
of A.

The structure of Q
k

successively introduces n�k zeros in the kth column
of A while leaving the upper k � 1 rows untouched,

Q
k

Â
k�1 =


I 0
0 F

� 
Â11 Â12
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�
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Â11 Â12

0 FÂ22

�
, (5.9)

with Â
k�1 = Q

k�1 · · ·Q2Q1A, and Â
ij

representing the sub-matrices, or
blocks, of Â

k�1 with corresponding structure as Q
k

.
To obtain a triangular matrix, F should introduce zeros such that for x

an (n� k + 1) column vector, we get

Fx =

2

6664

±kxk
0
...
0

3

7775
= ±kxke1, (5.10)

with e1 = (1, 0, ..., 0)T a standard basis vector, and now we need to construct
F to be an orthogonal matrix. We do this in the form of a reflector, so
that Fx is the reflection of x in a hyperplane orthogonal to the vector
v = ±kxke1 � x, that is

F = I � 2
vvT

vTv
. (5.11)

The full algorithm for QR factorization of a square matrix A is based
on this Householder reflector, where we use the notation A

i:j,k:l for sub-
matrices.

Algorithm 2 does not explicitly construct the matrix Q, although from
the vectors v

k

we can compute the application of Q = Q1Q2 · · ·Qn

or QT =
Q

n

· · ·Q2Q1.
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Figure 5.1: Householder reflectors across the two hyperplanes H+ and H�.

Algorithm 2: Householder QR factorization

for k = 1 to n do
x = A

k:n,k

v
k

= sign(x1)kxk2e1 + x
v
k

= v
k

/kv
k

k
A

k:n,k:n = A
k:n,k:n � 2v

k

(vT
k

A
k:n,k:n)

end

5.3 LU factorization

Similar to Householder triangulation, Gaussian elimination transforms a
square n ⇥ n matrix A into an upper triangular matrix U by successively
inserting zeros below the diagonal. In the case of Gaussian elimination, this
is done by subtracting multiples of each row from subsequent rows, which
corresponds to multiplication by a sequence of triangular matrices L

k

from
the left, so that

L
n�1 · · ·L2L1A = U. (5.12)

By setting L�1 = L
n�1 · · ·L2L1 we obtain the factorization A = LU ,

with L = L�1
1 L�1

2 · · ·L�1
n�1.



5.4. LEAST SQUARES PROBLEMS 45

The k step in the Gaussian elimination algorithm involves division by
the diagonal element u

kk

, and thus for stability it is necessary to avoid a
small number in that position, which is achieved by reordering the rows, or
pivoting. With a permutation matrix P , the LU factorization with pivoting
may be expressed as PA = LU .

Algorithm 3: Gaussian elimination with pivoting
Starting from the matrices U = A, L = I, P = I
for k = 1 to n� 1 do

Select i � k to maximize |u
ik

|
Interchange the rows k and i in the matrices U,L, P
for j = k + 1 to n do

l
jk

= u
jk

/u
kk

u
j,k:n = u

j,k:n � l
jk

u
k,k:n

end
end

Cholesky factorization

A symmetric positive definite matrix A can be decomposed into a product
of a lower triangular matrix L and its transpose LT , which is referred to as
the Cholesky factorization

A = LLT . (5.13)

In the Cholesky factorization algorithm, symmetry is exploited to per-
form Gaussian elimination from both the left and right of the matrix A at
the same time, which results in an algorithm at half the computational cost
of LU factorization.

5.4 Least squares problems

We now consider a system of linear of equations Ax = b for which we have
n unknowns but m > n equations, that is x 2 Rn, A 2 Rm⇥n and b 2 Rm.

There exists no inverse matrix A�1, and if the vector b /2 range(A) we
say that the system is overdetermined, and thus no exact solution x exists
to the problem Ax = b. Instead we seek the solution x 2 Rn that minimizes
the l2-norm of the residual b � Ax 2 Rm, which is referred to as the least
squares problem

min
x2Rn

kb� Axk2. (5.14)
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A geometric interpretation is that we seek the vector x 2 Rn such that
the Euclidian distance between Ax in range(A) and b is minimal, which
corresponds to

Ax = Pb, (5.15)

where P 2 Rm⇥m is the orthogonal projector onto range(A).

b 

Ax=Pb 

range(A) 

r=b-Ax 

Figure 5.2: Geometric illustration of the least squares problem.

Thus the residual r = b�Ax is orthogonal to range(A), that is (Ay, r) =
(y, AT r) = 0 for all y 2 Rn, so that (5.14) is equivalent to

AT r = 0, (5.16)

which corresponds to the n⇥ n system

ATAx = AT b, (5.17)

referred to as the normal equations.
The normal equations thus provide a way to solve them⇥n least squares

problem by solving a square n⇥ n system. The square matrix ATA is non-
singular if and only if A has full rank, for which the solution is given as
x = (ATA)�1AT b, where the matrix (ATA)�1AT is known as the pseudoin-
verse of A.
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5.5 Exercises

Problem 15. Prove that the product of lower triangular matrices is lower
triangular, and the product of upper triangular matrices is upper triangular.

Problem 16. Try out the algorithms for QR and LU factorization for a
3⇥ 3 matrix A.

Problem 17. Implement the algorithms for QR and LU factorization and
test the computer program for n⇥ n matrices with n large.

Problem 18. Derive the normal equations for the system
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