
Lab 1: Iterative Methods for Solving Linear Systems

January 22, 2017

Introduction

Many real world applications require the solution to very large and sparse linear systems
where direct methods such as Gaussian elimination are prohibitively expensive both in
terms of computational cost and in available memory. In this Lab, you will learn how
to implement the Jacobi, Gauss-Seidel, Conjugate Gradient (CG) (and optionally Pre-
conditioned Conjugate Gradient (PCG) and the General Minimal RESidual (GMRES))
algorithms to solve linear systems and investigate the associated convergence properties
of these algorithms.

1 Problem 1

1.1 Problem statement

Consider the following advection-diffusion equation in 1D with the following boundary
conditions.

−εu′′ + βu′ = 0 u(0) = 0, u(1) = 1 (1)

where ε is the diffusion coefficient and β is the velocity at which the quantity is flowing.
Equation (1) can be discretized and written in matrix form as,

Ax = b

We have provided a function that discretizes these equations and returns the matrices for
you. An example call to this function is shown below.

import numpy as np

N = 60

beta = 1; epsilon = 1e-2;

A,b = generate_matrices(epsilon,beta,N)

Note that we have included the header “import numpy as np”. Numpy will be the package
we will use for numerical linear algebra in Python. N is the number of intervals we use
in the discretization - we are essentially dividing the interval [0, 1] into N intervals each
of size h = 1/N . The larger N , the more accurate the solution. Fix N = 60 for now. To
solve the linear system directly using a Python function type,

x = np.linalg.solve(A,b)

1

The analytic solution is given by :

uex =
exp

(
β
ε
x
)
− 1

exp
(
β
ε

)
− 1

You can compare your solution to the exact solution. To do this, and to view the accuracy
of the computed solution type,

visualize_solution(x)

Exercise: Try experimenting with different values of N and observe what happens. You
will see that the larger N is, the smaller the discretization error and the better the match
with the exact solution.

1.2 Jacobi method

We start by implementing the Jacobi method for solving linear systems. The Jacobi
algorithm and the Gauss-Seidel algorithm (that you will later implement) belong to a
class of iterations to solve linear systems called stationary iterations. They are named as
such because the solution of the linear system is expressed as finding the stationary point
of some fixed-point iteration. The matrix A,

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


can be split into A = D + R where D is its diagonal component and R is the remaining
matrix after subtracting the diagonal, R = A−D,

D =


a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann

 , R =


0 a12 · · · a1n
a21 0 · · · a2n
...

...
. . .

...
an1 an2 · · · 0


The solution to the linear system by Jacobi method is then obtained iteratively by:

xk+1 = D−1(b−Rxk) or xk+1
i =

1

aii

(
bi −

∑
j 6=i

aijx
k
j

)

A basic implementation of the Jacobi method is given below.

[m,n] = np.shape(A)

x_jacobi = np.zeros(np.shape(x));

maxit = 20;

nm = np.zeros((maxit,1))

D = np.diag(np.diag(A))

R = A - D

Dinvb = np.linalg.solve(D,b)

for k in np.arange(maxit):

x_jacobi = Dinvb - np.linalg.solve(D,np.dot(R,x_jacobi))

nm = np.linalg.norm(np.dot(A,x_jacobi)-b)

2

Figure 1: (left) Plot of the residual norm vs. the iteration count for several values of N .
(right) Semilog plot of the residual norm vs. iteration count for several values of N .

Again, if you want to visualize the solution compared to the analytic solution, just call
the visualize solution function.

visualize_solution(x_jacobi)

To see how the method is converging, plot the norm of the residual ‖Ax−b‖2 as a function
of the iteration number. Note that we have stored the residual norm in a vector called
nm.

import matplotlib.pyplot as plt

plt.plot(nm)

In Figure 1 we plot the behavior of the norm vs. the iteration count for several values of
N . The plot to the right is on a semilog plot, so it is clear to see that the convergence
rate is slower for N larger. This is because the spectral radius ρ(D−1R) gets larger as N
gets larger. Recall the definition of spectral radius,

ρ(A) = max{|λ1|, |λ2|, · · · , |λn|}

where λi denotes the i-th eigenvalue of A. We have plotted in Figure 2 how the spectral
radius varies with N . The spectral radius is the factor that controls convergence. For
stationary methods to converge, ρ < 1 and the smaller ρ is, the faster the convergence
rate.
Exercise: Calculate the spectral radius for the varying values of N .

T = np.linalg.solve(-D,R)

eigsT, _ = np.linalg.eig(T)

rho = np.max(np.abs(eigsT))

Another interesting thing that can be shown (and is a nice linear algebra exercise if you are
interested) is that when N ≥ β/2ε the matrix is diagonally dominant, a highly desirable
property and a sufficient (but not necessary) condition for the Jacobi method to converge.
Recall that a matrix A is diagonally dominant if

|aii| ≥
∑
j 6=i

|aij| for all i

Also recall that h = 1/N so the condition for diagonal dominance can also be written in
terms of the grid resolution as h ≤ 2ε/β.

3

Figure 2: Spectral radius as a function of the grid size. Note that as the grid size gets
larger, the spectral radius goes to 1 and convergence of Jacobi method will thus be slower.

Exercise: Run the Jacobi algorithm with an N < β/2ε and you will observe that the
Jacobi method will probably not converge.

2 Problem 2

2.1 Problem statement

Let us a consider a slightly more complicated problem. We consider a 2D Poisson problem
on a square [−1, 1]× [−1, 1],

−O2u = f

with boundary conditions that vanish and with a source term,

f(x) = 1 if |x| < 0.5 and |y| < 0.5

A visualization of the source field and the exact solution is shown in Figure 3. Note the
difference in scales.

Figure 3: (left) Source term for the 2D Poisson problem. (right) The solution of the 2D
Poisson problem.

N = 40

A, b = generate_matrices_2d(N)

The code above will generate a system matrix A of size (N + 1)× (N + 1), corresponding
to the number of nodes in the grid.

4

2.2 Jacobi method

Exercise: Run the Jacobi algorithm you implemented in Question 1 on this problem.
Set maxit= 20. You will observe that even after 20 iterations, the method is far from
convergence. Again, pay close attention to the scales. Note that the convergence rate
is very slow. This is because the spectral radius in this case is 0.997. To visualize the
solution after 20 iterations as shown in Figure 4,call the visualize solution 2d function.

visualize_solution_2d(x_jacobi)

Figure 4: Solution of the 2D Poisson problem after 20 steps of the Jacobi method.

2.3 Gauss-Seidel method

The next algorithm we will implement is Gauss-Seidel. Gauss-Seidel is another example
of a stationary iteration. The idea is similar to Jacobi but here, we consider a different
splitting of the matrix A. The matrix A,

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


can be split into A = L+U where L is the lower triangular part of A and U is the strictly
upper triangular part of A (without the diagonal),

L =


a11 0 · · · 0
a12 a22 · · · 0
...

...
. . .

...
a1n a2n · · · ann

 , U =


0 a12 · · · a1n
0 0 · · · a2n
...

...
. . .

...
0 0 · · · 0


The solution to the linear system by the Gauss-Seidel algorithm is then obtained itera-
tively by:

xk+1 = L−1(b− Uxk) or xk+1
i =

1

aii

(
bi −

i−1∑
j=1

aijx
k+1
j −

n∑
j=i+1

aijx
k
j

)

Note that ρgs(L
−1U) < ρjacobi(D

−1R) for the class of matrices that converge with these
algorithms. See the convergence plot in Figure 6.

5

Exercise: Program the Gauss-Seidel method and run it for 20 iterations. Hint: To
extract the lower triangular part of the matrix, use np.tril(A), and visualize the solution.
You should get something that matches the figure shown in Figure 5.
Exercise: Gauss-Seidel has favorable convergence properties over Jacobi, but it also has
the additional advantage that it requires less storage. Why does Gauss-Seidel require less
storage than Jacobi?

Figure 5: Solution of the 2D Poisson problem after 20 steps of the Gauss-Seidel method.

Figure 6: (left) Plot of the residual norm vs. the iteration count. (right) Semilog plot of
the residual norm vs. iteration count.

Exercise: The Jacobi algorithm has recently gained popularity, even with its slow con-
vergence. This is because it is very easy to parallelize. Why?

2.4 Conjugate Gradient

Another class of iterative algorithms that are used to solve linear systems are Krylov
algorithms. Krylov subspace methods are considered as one of the ten most important
classes of numerical methods (To read about its history and about the other 9 algorithms,
refer to https://www.siam.org/pdf/news/637.pdf). Krylov subspace methods are based
on successive multiplications of the matrix A with the right-hand-side vector b, and in
fact, this allows A to be given as an operator. This eliminates the need to store every
entry in the matrix. Additionally, since A is sparse, these multiplications of A with b are
generally cheap.
Conjugate gradient (CG) is one of the most widely used methods for solving sparse linear
systems, with A being a symmetric positive definite matrix.

6

x_cg = np.zeros(np.shape(x));

rk = b-np.dot(A,x_cg)

p = rk

for k in np.arange(maxit):

alpha = np.dot(rk,rk)/np.dot(p,np.dot(A,p))

x_cg = x_cg + alpha*p

rkp1 = rk - alpha*np.dot(A,p)

beta = np.dot(rkp1,rkp1)/np.dot(rk,rk)

p = rkp1 + beta*p

rk = rkp1

Figure 7: Solution of the 2D Poisson problem after 20 steps of the Conjugate Gradient
algorithm.

In Figure 7 we can see that even with 20 iterations, the computed solution very well
matches the exact solution. In fact, the convergence plot in Figure 8 shows how the
residual norm behaves with conjugate gradient.
Exercise: Note that the residual norm does not monotically decrease for CG. Why?
What is the norm that Conjugate Gradient is minimizing?

Figure 8: (left) Plot of the residual norm vs. the iteration count. (right) Semilog plot of
the residual norm vs. iteration count.

2.5 Preconditioned Conjugate Gradient (PCG) (Optional)

In many cases, the linear systems are very ill-conditioned and CG may be slow to converge,
or even not converge at all. In fact, the number of iterations required for the conjugate

7

gradient algorithm to converge is proportional to the square root of the condition number
of A. Preconditioning is often necessary to ensure convergence of CG. A standard method
for preconditioning is to multiply the matrix equation by a matrix M such that

M−1Ax = M−1b

Note that this system is equivalent to the original system. To improve convergence of
CG, the preconditioner M needs to be chosen so that M−1A is better conditioned than
A. In the case of conjugate gradient, M needs to be positive definite.
In the code below, we show the conjugate gradient code with Jacobi preconditioning (M =
diag(A)).

D = np.diag(np.diag(A))

x_pcg = np.zeros(np.shape(x));

rk = b-np.dot(A,x_pcg)

zk = np.linalg.solve(D,rk)

p = zk

for k in np.arange(maxit):

alpha = np.dot(rk,zk)/np.dot(p,np.dot(A,p))

x_pcg = x_pcg + alpha*p

rkp1 = rk - alpha*np.dot(A,p)

zkp1 = np.linalg.solve(D,rkp1)

beta = np.dot(zkp1,rkp1)/np.dot(zk,rk)

p = zkp1 + beta*p

rk = rkp1

zk = zkp1

Consider the example where A is a matrix with entries aii = 0.2+
√
i along the diagonals,

and 1 on the subdiagonal, superdiagonal, and along the 200th subdiagonal and 200th
superdiagonal (i.e. aij = 1 when|i − j| = 1 and |i − j| = 200). We have provided a
function to return this matrix for you.

[A,b] = pcg_example()

Observe the behaviour of the residual norm for CG and PCG for this matrix.

2.6 GMRES (Optional)

For non-symmetric matrices, one of the most popular iterative methods is the Generalized
Minimal RESidual (or, GMRES). Similar to CG, it is a Krylov solver. Recall the definition
of a Krylov subspace Km(A, b),

Kk(A, b) = span{b, Ab,A2, · · · , Ak−1}

The idea behind GMRES is that at every iteration, GMRES computes the solution esti-
mate xk that minimizes the residual Euclidean norm over a Krylov subspace of dimension
k. To generate this subspace, the Arnoldi method is used. The Arnoldi iteration uses
a modified Gram-Schmidt method to get the orthonormal vectors that span the Krylov
subspace. The Arnoldi algorithm is summarized in Algorithm 1.
Note that after k steps of the Arnoldi algorithm, we have generated an upper Hessenberg
matrix H and a matrix Q whose columns are the orthonormal vectors spanning the Krylov
subspace. These matrices satisfy the following relation,

AQk = Qk+1H̄k

8

Algorithm 1 Arnoldi using Modified Gram-Schmidt

1: Given A, b the right hand side.

2: Compute q1 = b/β and β
def
= ‖b‖2

3: for all j = 1, . . . , k do
4: Compute v = Aqj
5: for all i = 1, . . . , j do
6: hij := q∗i v
7: Compute v := v − hijqi
8: end for
9: hj+1,j := ‖v‖2. If hj+1,j = 0 stop
10: vj+1 = v/hi+1,i

11: end for

Algorithm 2 GMRES

1: Given A, b the right hand side.

2: Compute q1 = b/β and β
def
= ‖b‖2

3: for all j = 1, . . . , k do
4: Perform j steps of the Arnoldi algorithm as described in Algorithm 1
5: Find y that minimizes ‖H̄j−βe1‖2 where e1 is the first vector of the standard basis

Rj+1 (i.e. e1 = (1, 0 , · · · , 0)T) Set xj = Qjy
6: end for

The GMRES algorithm is then described in Algorithm 2. In step 5, you can either solve the
least squares problem using QR or use the numpy function, numpy.linalg.lstsq(H̄j, βe1).
Exercise: Where in the code are the Krylov vectors computed?

9

