
Chapter 3

Matrices and Linear
transformations

A linear transformation acting on a Euclidian vector can be represented as
a matrix. Many of the concepts we introduce in this chapter generalize to
linear operators acting on functions in infinite dimensional spaces, which is
fundamental for the study of partial di↵erential equations.

3.1 Matrix algebra

Linear transformation as a matrix

A function f : Rn ! Rn is a linear transformation, or linear map, if

(i) f(x+ z) = f(x) + f(z),

(ii) f(↵x) = ↵f(x),

for all x, z 2 Rn and ↵ 2 R. In the standard basis (e1, ..., en) we can express
the ith component of the vector y = f(x) 2 Rn as

y
i

= f
i

(x) = f
i

(
nX

j=1

x
j

e
j

) =
nX

j=1

x
j

f
i

(e
j

),

where f
i

: Rn ! R for all i = 1, ..., n. In component form, we write this as

y1 = a11x1 + ...+ a1nxn

...
y
n

= a
n1x1 + ...+ a

nn

x
n

(3.1)
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with a
ij

= f
i

(e
j

). That is y = Ax, where A is an n⇥ n matrix

A =

2

64
a11 · · · a1n
...

. . .
...

a
n1 · · · a

nn

3

75 . (3.2)

The set of real valued m ⇥ n-matrices defines a vector space Rm⇥n,
by the basic operations of (i) component-wise matrix addition and (ii)
component-wise scalar multiplication. A matrix A 2 Rm⇥n also defines
a linear map x 7! Ax, by the basic operations of the matrix-vector product
and component-wise scalar multiplication.

A(x+ y) = Ax+ Ay, x, y 2 Rn,

A(↵x) = ↵Ax, x 2 Rn,↵ 2 R.

Matrix-vector product

In index notation we write a vector b = (b
i

), and a matrix A = (a
ij

), with i
the row index and j is the column index. For an m⇥ n matrix A, and x an
n-dimensional column vector, we define the matrix-vector product b = Ax
to be the m-dimensional column vector b = (b

i

), such that

b
i

=
nX

j=1

a
ij

x
j

, i = 1, ..., n. (3.3)

With a
j

the jth column of A, an m-vector, we can express the matrix-
vector product as a linear combination of the set of column vectors {a

j

}n
j=1

b = Ax =
nX

j=1

x
j

a
j

, (3.4)

or in matrix form
2

66664
b

3

77775
=

2

66664
a1 a2 · · · a

n

3

77775

2

6664

x1

x2
...
x
n

3

7775
= x1

2

66664
a1

3

77775
+ x2

2

66664
a2

3

77775
+ ...+ x

n

2

66664
a
n

3

77775
.

The vector space spanned by {a
j

}n
j=1 is the column space, or range, of

the matrix A, so that range(A) = span{a
j

}n
j=1. The null space, or kernel,
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of an m ⇥ n matrix A is the set of vectors x 2 Rn such that Ax = 0, with
0 the zero vector in Rm, that is null(A) = {x 2 Rn : Ax = 0}.

The dimension of the column space is the column rank of the matrix,
rank(A). We note that the column rank is equal to the row rank, corre-
sponding to the space spanned by the row vectors of A, and the maximal
rank of an m⇥ n matrix is min(m,n), which we refer to as full rank.

Matrix-matrix product

The matrix-matrix product B = AC is a matrix in Rl⇥n, defined for two
matrices A 2 Rl⇥m and C 2 Rm⇥n, as

b
ij

=
mX

k=1

a
ik

c
kj

, (3.5)

with B = (b
ij

), A = (a
ik

) and C = (c
kj

). Here we may sometimes omit
the summation sign and use the Einstein convention where repeated in-
dices imply summation over those same indices, so that we can express the
matrix-matrix product (3.5) simply as b

ij

= a
ik

c
kj

.
Similarly as for the matrix-vector product, we may interpret the columns

b
j

of the matrix-matrix product B as a linear combination of the columns
a
k

with coe�cients c
kj

b
j

= Ac
j

=
mX

k=1

c
kj

a
k

, (3.6)

or in matrix form
2

66664
b1 b2 · · · b

n

3

77775
=

2

66664
a1 a2 · · · a

m

3

77775

2

4 c1 c2 · · · c
n

3

5 .

For two linear transformations f(x) and g(x) on Rn, with associated
square n⇥n-matrices A and C, the matrix-matrix product AC corresponds
to the composition f � g(x) = f(g(x)).

Matrix transpose and the inner and outer products

The transpose (or adjoint) of an m ⇥ n matrix A = (a
ij

) is defined as the
matrix AT = (a

ji

), with the column and row indices reversed.
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Using the matrix transpose, the inner product of two vectors v, w 2 Rn

can be expressed in terms of a matrix-matrix product vTw, as

(v, w) = vTw =
⇥
v1 · · · v

n

⇤

2

666664

w1

...

w
m

3

777775
= v1w1 + ...+ v

n

w
n

. (3.7)

Similarly, the outer product, or tensor product, of two vectors v, w 2 Rn,
denoted by v ⌦ w, is defined as the m ⇥ n matrix corresponding to the
matrix-matrix product vwT , that is

v ⌦ w = vwT =

2

666664

v1

...

v
m

3

777775

⇥
w1 · · · w

n

⇤
=

2

666664

v1w1 · · · v1wn

...
...

v
m

v1 v
m

w
n

3

777775
.

In tensor notation we can express the inner and the outer products as
(v, w) = v

i

w
i

and v ⌦ w = v
i

w
j

, respectively.
The transpose has the property that (AB)T = BTAT , and thus satisfies

the equation (Ax, y) = (x,ATy), for any x 2 Rn, y 2 Rm, which follows
from the definition of the inner product in Euclidian vector spaces, since

(Ax, y) = (Ax)Ty = xTATy = (x,ATy). (3.8)

A is said to be symmetric (or self-adjoint) if A = AT , so that (Ax, y) =
(x,Ay). If in addition (Ax, x) > 0 for all non-zero x 2 Rm, we say that A
is a symmetric positive definite matrix. A matrix is said to be normal if
ATA = AAT .

Matrix norms

To measure the size of a matrix, we first introduce the Frobenius norm,
corresponding to the l2-norm of the matrix A interpreted as an mn-vector,
that is

kAk
F

=

 
mX

i=1

nX

j=1

|a
ij

|2
!1/2

. (3.9)

The Frobenius norm is the norm associated to the following inner prod-
uct over the space Rm⇥n,

(A,B) = tr(ATB), (3.10)
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with the trace of a square n⇥ n matrix C = (c
ij

) defined by

tr(C) =
nX

i=1

c
ii

. (3.11)

Figure 3.1: Illustration of the map x 7! Ax; of the unit circle kxk2 = 1
(left) to the ellipse Ax (right), corresponding to the matrix A in (3.13).

Matrix norms for A 2 Rm⇥n are also induced by the respective l
p

-norms
on Rm and Rn, in the form

kAk
p

= sup
x2Rn

x 6=0

kAxk
p

kxk
p

= sup
x2Rn

kxkp=1

kAxk
p

. (3.12)

The last equality follows from the definition of a norm, and shows that
the induced matrix norm can be defined in terms of its map of unit vectors,
which we illustrate in Figure 3.1 for the matrix

A =


1 2
0 2

�
. (3.13)

Determinant

The determinant of a square matrix A is denoted det(A) or |A|. For a 2⇥2
matrix we have the explicit formula

det(A) =

����
a b
c d

���� = ad� bc. (3.14)

For example, the determinant of the matrix A in (3.13) is computed as
det(A) = 1 · 2� 2 · 0 = 2.
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The formula for the determinant is extended to a 3⇥ 3 matrix by

det(A) =

������

a b c
d e f
g h i

������
= a

����
e f
h i

����� b

����
d f
g i

����+ c

����
d e
g h

����

= a(ei� fh)� b(di� fg) + c(dh� eg), (3.15)

and by recursion this formula can be generalized to any square matrix.
For a 2 ⇥ 2 matrix the absolute value of the determinant is equal to

the area of the parallelogram that represents the image of the unit square
under the map x 7! Ax, and similarly for a 3⇥ 3 matrix the volume of the
parallelepiped representing from the mapped unit cube. More generally,
the absolute value of the determinant det(A) represents a scale factor of
the linear transformation A.

(1,0)	

(0,1)	

(1,0)	

(0,1)	

(2,2)	 (3,2)	

Figure 3.2: The map x 7! Ax (right) of the unit square (left), for the matrix
A in (3.13), with the corresponding area given by | det(A)| = 2.

Matrix inverse

If the column vectors {a
j

}n
j=1 of a square n ⇥ n matrix form a basis for

Rn, then all vectors b 2 Rn can be expressed as b = Ax, where the vector
x 2 Rn holds the coordinates of b in the basis {a

j

}n
j=1.

In particular, all x 2 Rn can be expressed as x = Ix, where I is the
square n ⇥ n identity matrix in Rn, taking the standard basis as column
vectors,

I =

2

66664
e1 e2 · · · e

n

3

77775
=

2

6664

1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 · · · 0 1

3

7775
.
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A square matrix A 2 Rn⇥n is invertible, or non-singular, if there exists
an inverse matrix A�1 2 Rn⇥n such that A�1A = AA�1 = I, which also
means that (A�1)�1 = A. Further, for two matrices A and B we have the
property that (AB)�1 = B�1A�1.

Theorem 4 (Inverse matrix). For a square matrix A 2 Rn⇥n, the following
is equivalent:

(i) A has an inverse A�1,

(ii) det(A) 6= 0,

(iii) rank(A) = n,

(iv) range(A) = Rn

(v) null(A) = {0}.

The matrix inverse is unique. To see this, assume that there exist two
matrices B1 and B2 such that AB1 = AB2 = I; which by linearity gives
that A(B1 � B2) = 0, but since null(A) = {0} we have that B1 = B2.

3.2 Orthogonal projectors

Orthogonal matrix

A square matrix Q 2 Rn⇥n is ortogonal, or unitary, if QT = Q�1. With q
j

the columns of Q we thus have that QTQ = I, or in matrix form,
2

6664

q1
q2
...
q
n

3

7775

2

66664
q1 q2 · · · q

n

3

77775
=

2

6664

1
1

. . .
1

3

7775
,

so that the columns q
j

form an orthonormal basis for Rn.
Multiplication by an orthogonal matrix preserves the angle between two

vectors x, y 2 Rn, since

(Qx,Qy) = (Qx)TQy = xTQTQy = xTy = (x, y), (3.16)

and thus also the length of a vector,

kQxk = (Qx,Qx)1/2 = (x, x)1/2 = kxk. (3.17)

As a linear transformation an orthogonal matrix acts as a rotation or
reflection, depending on the sign of the determinant which is always either
1 or �1.
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Orthogonal projector

A projection matrix, or projector, is a square matrix P such that

P 2 = PP = P. (3.18)

It follows that
Pv = v, (3.19)

for all vectors v 2 range(P ), since v is of the form v = Px for some x, and
thus Pv = P 2x = Px = v. For v /2 range(P ) we have that P (Pv � v) =
P 2v � Pv = 0, so that the projection error Pv � v 2 null(P ).

The matrix I � P is also a projector, the complementary projector to
P , since (I � P )2 = I � 2P + P 2 = I � P . The range and null space of
the two projectors are related as range(I � P ) = null(P ) and range(P ) =
null(I � P ), so that P and I � P separates Rn into two subspaces S1

and S2, since the only v 2 range(P ) \ range(I � P ) is the zero vector;
v = v � Pv = (I � P )v = {0}.

x 

y 

Pyx 

P⊥yx 

Pr
yx 

H 

Figure 3.3: The projector P
y

x of a vector x in the direction of another
vector y, its orthogonal complement P?yx, and P r

y

x the reflector of x in the
hyperplane H defined by y as a normal vector.

If the two subspaces S1 and S2 are orthogonal, we say that P is an
orthogonal projector. This is equivalent to the condition P = P T , since the
inner product between two vectors in S1 and S2 then vanish,

(Px, (I � P )y) = (Px)T (I � P )y = xTP T (I � P )y = xT (P � P 2)y = 0.
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If P is an orthogonal projector, so is I�P . For example, the orthogonal
projection P

y

x of one vector x in the direction of another vector y, its
orthogonal complement P?yx, and P r

y

x, its reflection in the hyperplane H
defined by y as a normal vector, correspond to the projectors

P
y

=
yyT

kyk2 , P?y = I � yyT

kyk2 , P r

y

= I � 2
yyT

kyk2 . (3.20)

3.3 Exercises

Problem 8. Prove the equivalence of the definitions of the induced matrix
norm, defined by

kAk
p

= sup
x2Rn

x 6=0

kAxk
p

kxk
p

= sup
x2Rn

kxkp=1

kAxk
p

. (3.21)

Problem 9. For A 2 Rm⇥l, B 2 Rl⇥n, prove that (AB)T = BTAT .

Problem 10. For A,B 2 Rn⇥n, prove that (AB)�1 = B�1A�1.

Problem 11. Prove that an orthogonal matrix is normal.

Problem 12. Show that the matrices A and B are orthogonal and com-
pute their determinants. Which matrix represents a rotation and reflection,
respectively?

A =


cos(✓) � sin(✓)
sin(✓) cos(✓)

�
B =


cos(✓) sin(✓)
sin(✓) � cos(✓)

�
(3.22)

Problem 13. For P a projector, prove that range(I � P ) = null(P ), and
that range(P ) = null(I � P ).

Problem 14. For the vector y = (1, 0)T , compute the action of the projec-
tors P

y

, P?y, P r

y

on a general vector x = (x1, x2)T .





Chapter 4

Applications

In this chapter we give some examples on where linear transformations are
used in di↵erent fields, including approximation of di↵erential equations,
image processing, computer graphics, computer vision and robotics.

4.1 Approximation of di↵erential equations

Di↵erence and summation matrices

Subdivide the interval [0, 1] into a structured grid T h with n intervals and
n+ 1 nodes x

i

, such that 0 = x0 < x1 < x2 < ... < x
n

= 1, with a constant
interval length, or grid size, h = x

i

� x
i�1 for all i, so that x

i

= x0 + ih.
For each x = x

i

we may approximate the integral of a function f(x)
with f(0) = 0, by a rectangular quadrature rule, so that

F (x
i

) ⌘
Z

xi

0

f(s)ds ⇡
iX

k=1

f(x
k

)h ⌘ F
h

(x
i

), (4.1)

which defines a function F
h

(x
i

) ⇡ F (x
i

) for all nodes x
i

in the subdivision.
This function defines a linear transformation of the vector of sampled func-
tion values at the nodes y = (f(x1), ..., f(xn

))T , which can be expressed by
the following matrix equation,

L
h

y =

2

6664

h 0 · · · 0
h h · · · 0
...

. . .
...

h h · · · h

3

7775

2

6664

f(x1)
f(x2)

...
f(x

n

)

3

7775
=

2

6664

f(x1)h
f(x1)h+ f(x2)h

...P
n

k=1 f(xk

)h

3

7775
, (4.2)

31
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where L
h

is a summation matrix, with an associated inverse L�1
h

,

L
h

= h

2

6664

1 0 · · · 0
1 1 · · · 0
...

. . .
...

1 1 · · · 1

3

7775
) L�1

h

= h�1

2

6664

1 0 · · · 0
�1 1 · · · 0
...

. . .
...

0 · · · �1 1

3

7775
. (4.3)

The inverse matrix L�1
h

corresponds to a di↵erence matrix over the same
subdivision T h. To see this, multiply the matrix L�1

h

to y = (f(x
i

)),

L�1
h

y = h�1

2

6664

1 0 · · · 0
�1 1 · · · 0
...

. . .
...

0 · · · �1 1

3

7775

2

6664

f(x1)
f(x2)

...
f(x

n

)

3

7775
=

2

6664

(f(x1)� f(x0))/h
(f(x2)� f(x1))/h

...
(f(x

n

)� f(x
n�1))/h

3

7775
,

where we recall that f(x0) = f(0) = 0.

f(x)	

x1	 x2	 x3	 x4	x0=0	 xn=1	 x	 x	

f(x)	

x1	 x2	 x3	 x4	 xn=1	x0=0	

Figure 4.1: Rectangular rule quadrature (left) and finite di↵erence approx-
imation (right) on a subdivision of [0, 1] with interval length h.

As the interval length h ! 0, the summation and di↵erence matrices
converge to integral and di↵erential operators, such that for each x 2 (0, 1),

L
h

y !
Z

x

0

f(s)ds, L�1
h

y ! f 0(x). (4.4)

Further, we have for the product of the two matrices that

y = L
h

L�1
h

y ! f(x) =

Z
x

a

f 0(s)ds, (4.5)

as h ! 0, which corresponds to the Fundamental theorem of Calculus.
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Di↵erence operators

The matrix L�1
h

in (4.3) corresponds to a backward di↵erence operator D�
h

,
and similarly we can define a forward di↵erence operator D+

h

, by

D�
h

= h�1

2

666664

1 0 0 · · · 0
�1 1 0 · · · 0
...

. . .
...

0 · · · �1 1 0
0 · · · 0 �1 1

3

777775
, D+

h

= h�1

2

666664

�1 1 0 · · · 0
0 �1 1 · · · 0
...

. . .
...

0 · · · 0 �1 1
0 · · · 0 0 �1

3

777775
.

The matrix-matrix product D+
h

D�
h

takes the form,

D+
h

D�
h

= h�2

2

666664

�1 1 0 · · · 0
1 �2 1 · · · 0
...

. . .
...

0 · · · 1 �2 1
0 · · · 0 1 �2

3

777775
, (4.6)

which corresponds to an approximation of a second order di↵erential oper-
ator. The matrix A = �D+

h

D�
h

is diagonally dominant, that is

|a
ii

| �
X

j 6=i

|a
ij

|, (4.7)

and symmetric positive definite, since

xTAx = ...+ x
i

(�x
i�1 + 2x

i

� x
i+1) + ...+ x

n

(�x
n�1 + 2x

n

)

= ...� x
i

x
i�1 + 2x2

i

� x
i

x
i+1 � x

i+1xi

+ ...� x
n�1xn

+ 2x2
n

= ...+ (x
i

� x
i�1)

2 + (x
i+1 � x

i

)2 + ...+ x2
n

> 0,

for any non-zero vector x.

The finite di↵erence method

For a vector y = (u(x
i

)), the ith row of the matrix D+
h

D�
h

corresponds to a
finite di↵erence stencil, with u(x

i

) function values sampled at the nodes x
i

of the structured grid representing the subdivision of the interval I = (0, 1),

[(D+
h

D�
h

)y]
i

=
u(x

i+1)� 2u(x
i

) + u(x
i�1)

h2

=

u(x
i+1)� u(x

i

)

h
� u(x

i

)� u(x
i�1)

h
h

.
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Similarly, the di↵erence operatorsD�
h

andD+
h

correspond to finite di↵erence
stencils over the grid, and we have that for x 2 I,

(D+
h

D�
h

)y ! u00(x), (D�
h

)y ! u0(x), (D+
h

)y ! u0(x), (4.8)

as the grid size h ! 0.

-1	 2	 -1	

-1	 -1	

-1	

-1	

6	
-1	

-1	
-1	

-1	

-1	-1	 4	

Figure 4.2: Example of finite di↵erence stencils corresponding to the di↵er-
ence operator �(D+

h

D�
h

) over structured grids in R (lower left), R2 (right)
and R3 (upper left).

The finite di↵erence method for solving di↵erential equations is based
on approximation of di↵erential operators by such di↵erence stencils over a
grid. We can thus, for example, approximate the di↵erential equation

�u00(x) + u(x) = f(x), (4.9)

by the matrix equation

�(D+
h

D�
h

)y + (D�
h

)y = b, (4.10)

with b
i

= (f(x
i

)). The finite di↵erence method extends to multiple dimen-
sions, where the di↵erence stencils are defined over structured Cartesian
grids in R2 or R3, see Figure 4.2.

Solution of di↵erential equations

Since the second order di↵erence matrix A = �(D+
h

D�
h

) is symmetric pos-
itive definite, there exists a unique invers A�1. For example, in the case of
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n = 5 and the matrix below, we have that

A = 1/h2

2

66664

2 �1 0 0 0
�1 2 �1 0 0
0 �1 2 �1 0
0 0 �1 2 �1
0 0 0 �1 2

3

77775
) A�1 = h2/6

2

66664

5 4 3 2 1
4 8 6 4 2
3 6 9 6 3
2 4 6 8 4
1 2 3 4 5

3

77775
.

The matrix A�1 corresponds to a symmetric integral (summation) oper-
ator, where the matrix elements decay with the distance from the diagonal.
The integral operator has the property that when multiplied to a vector y,
each element y

i

of the vector is transformed into an average of all the vector
elements with most weight given to the elements close to y

i

.

Further, for y = (u(x
i

)) and b = (f(x
i

)), the solution to the di↵erential
equation

�u00(x) = f(x) (4.11)

can be approximated by

y = A�1b. (4.12)

We can thus compute approximate solutions for any function f(x) on
the right hand side of the equation (4.11). Although, we note that while A
is a sparse matrix with only few non-zero elements near the diagonal, the
inverse A�1 is a full matrix without zero elements.

In general the full matrix A�1 has a much larger memory footprint, of
the order ⇠ n2, than the sparse matrix A, for which it is enough to store ⇠ n
elements in memory. Therefore, for large matrices it may be impossible to
hold the matrix A�1 in memory, so that instead iterative solution methods
must be used based on multiplication by the sparse matrix A.

4.2 Image processing

Raster images

Whereas vector graphics describe an image in terms of geometric objects
such as lines and curves, raster graphics represent an image as an array of
color values positioned in a grid pattern. In 2D each square cell in the grid
is called a pixel (from picture element), and in 3D each cube cell is known
as a voxel (volumetric pixels).
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Filters and kernels

In 2D image processing, the operation of a convolution, or filter, is the
multiplication of each pixel and its neighbours by a convolution matrix,
or kernel, to produce a new image where each pixel is determined by the
kernel, similar to the stencil operators in the finite di↵erence method.

Common kernels include the Sharpen and Gaussian blur filters,
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where we note the similarity to the finite di↵erence stencil of the second
order derivative (Laplacian) and its inverse.

4.3 A�ne transformations

A�ne transformation

An a�ne transformation, or a�ne map, is a linear transformation composed
with a translation, corresponding to a matrix multiplication followed by
vector addition. For example, counter-clockwise rotation of a vector in R2

by an angle ✓, takes the form of multiplication by a Givens rotation matrix,

A =


cos(✓) � sin(✓)
sin(✓) cos(✓)

�
, (4.14)

whereas translation corresponds to addition by a position vector b, so that
the a�ne map takes the form x 7! Ax+b. We note that the rotation matrix
A is an orthogonal matrix with det(A) = 1.

We note that any triangle is related to each other through an a�ne
map; for example in the Euclidian plane R2, or to a surface (manifold) in
Euclidian space R3, see Figure 4.3.

Homogeneous coordinates

We note that by using homogeneous coordinates, or projective coordinates,
we can express any a�ne transformation as a matrix multiplication, in-
cluding translation. In R2 a vector x = (x1, x2)T in standard Cartesian
coordinates, is represented as x = (x1, x2, 1)T in homogeneous coordinates,
so that the rotation matrix takes the form

A =

2

4
cos(✓) � sin(✓) 0
sin(✓) cos(✓) 0
0 0 1

3

5 , (4.15)
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Figure 4.3: A�ne maps x 7! Ax+ b of the reference triangle, with corners
in (0, 0), (1, 0), (0, 1); in R2 (left); to a surface (manifold) in R3 (right).

and translation by a vector (t1, t2) is expressed by the matrix

A =

2

4
1 0 t1
0 1 t2
0 0 1

3

5 . (4.16)

An advantage of homogenous coordinates is the ability to apply com-
binations of a�ne transformations by multiplying the respective matrices,
which is used extensively in robotics, computer vision, and computer graph-
ics.


