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Course outline 

• Stochastic processes behind queuing theory (L2-L3) 

– Poisson process 

– Markov Chains (continuous time) 

– Continuous time Markov Chains and queuing systems 

• Markovian queuing systems (L4-L7) 

• Non-Markovian queuing systems (L8-L10) 

• Queuing networks (L11) 
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Outline for today 

• Recall: queuing systems 

• Recall: stochastic process 

• Poisson process – to describe arrivals and services  

–properties of Poisson process 

• Markov processes – to describe queuing systems 

–continuous-time Markov-chains 

• Graph and matrix representation 
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Recall from previous lecture 

• Queuing theory: performance evaluation of resource sharing 
systems 

• Specifically, for teletraffic systems 
 
• Definition of queuing systems  
• Performance triangle: service demand, server capacity and 

performance 
 

• Service demand is random in time → theory of stochastic 
processes 

Service 
Arrival 

Blocking 
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Stochastic process 
• Stochastic process 

–A system that evolves – changes its state - in time in 
a random way 
–Random variables indexed by a time parameter  
–State space: the set of possible values of r.v. X(t) (or 
X(n)) 
 

• The stochastic process is: 
– stationary, if all nth order statistics are unchanged 
by a shift in time:  
– ergodic, if the ensemble statistics  is equal  
to the  statistics  over a single realization 
– consequence: if a process ergodic, then the  
statistics of the process can be determined  
from a single (infinitely long) realization and  
vice versa 
 

State probability distribution  
for an ensemble of realizations 

State probability distribution  
in time for one realization  

•t 
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Outline for today 

• Recall: queuing systems,  

• Quick overview: stochastic process 

• Poisson process – to describe arrivals and services  

–properties of Poisson process 

• Markov processes – to describe queuing systems 

–continuous-time Markov-chains 

• Graph and matrix representation 

• Transient and stationary state of the process 



7 

Poisson process 

• Key distributions in the course 
• Poisson distribution 

– Discrete probability distribution 
– Probability of a given number of events 

 
 

 
• Exponential distribution 

– Continuous probability distribution  
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Poisson process 
• Poisson process: to model arrivals and services in a queuing system 
• Definition: 

–Stochastic process – discrete state, continuous time 
–X(t) : number of events (arrivals) in interval (0-t] (counting process) 
–X(t) is Poisson distributed with parameter λt 

 
 
 
–λ is called as the intensity of the Poisson process 
–note, limiting state probabilities pk=limt→∞ pk(t) do not exist 

 
 pk(t): Poisson distribution 

0 t k events  
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• Def: The number of arrivals in period (0,t] has Poisson distribution with 
paramteter λt, that is: 

 
 
• Theorem: For a Poisson process, the time between arrivals (interarrival time) is 

exponentially distributed with parameter λ: 
– Recall exponential distribution: 

 
 

– Proof: 
 tet)Pt)PtP λτ −−=−==≤ 1 until  arrival no(1 until  arrival oneleast at ()(
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number of arrivals 
Poisson distribution 

interarrival time  
exponential 

pk(t): Poisson distribution 

0 t k events  

Exp(λ) 
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• Def: a distribution is memoryless if: 
 
 
 

• Example: the length of the phone calls 
– Assume the probability distribution of holding times (τ) is memoryless 
– Your phone calls last 30 minutes in average 
– You have been on the phone for 10 minutes already 
– What should we expect? For how long will you keep talking? 

 
 
– It does not matter when you have started the call, if you have not 

finished yet, you will keep talking for another 30 minutes in average. 

 The memoryless property 

)()|( tPsstP >=>+> τττ

)()10|10( tPtP >=>+> τττ
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• Def: a distribution is memoryless if: 
 
 

• Exponential distribution: 
 
 

 
• The Exponential distribution is memoryless (the only continuous 

memoryless distribution): 
 

   
 

Exponential distribution and  
memoryless property 
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• Poisson arrival process implies exponential interarrival times 
• Exponential distribution is memoryless 

 
 
 
 

• For Poisson arrival process:  
the time until the next arrival does not depend on the time 
spent after the previous arrival  

Poisson process and exponential 
distribution 

number of arrivals 
Poisson distribution 

interarrival time  
exponential 

We start to follow the system from this point of time  

EP2200 Queuing theory and teletraffic 
systems 

Poisson arrival (λ) 

Exp(λ) t 
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Group work 

Waiting for the bus:  
• Bus arrivals can be modeled as stochastic 

process 
• The mean time between bus arrivals is 10 

minutes. Each day you arrive to the bus stop 
at a random point of time. How long do you 
have to wait in average? 

 

Consider the same problem, given that 
a) Buses arrive with fixed time intervals of 10 minutes. 
b) Buses arrive according to a Poisson process.  
See “The hitchhiker’s paradox” in Virtamo, Poisson process.  
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1. The sum of Poisson processes is a Poisson process 
– The intensity is equal to the sum of the intensities of the summed 

(multiplexed, aggregated) processes 
2. A random split of a Poisson process result in Poisson subprocesses 

– The intensity of subprocess i is λpi, where pi is the probability that 
an event becomes part of subprocess i  

3. Poisson arrivals see time average (PASTA) (we prove later) 
– Sampling a stochastic process according to Poisson arrivals gives 

the state probability distribution of the process (even if the arrival 
changes the state) 

– Also known as ROP (Random Observer Property) 
4. Superposition of arbitrary renewal processes tends  to a Poisson 

process (Palm theorem) – we do not prove 
– Renewal process: independent, identically distributed (iid)  

inter-arrival times 

Properties of the Poisson process 
(See also problem set 2) 
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Outline for today 

• Recall: queuing systems, stochastic process 

• Poisson process – to describe arrivals and services  

–properties of Poisson process 

• Markov processes – to describe queuing systems 

–   Continuous-time Markov-chains 

– Graph and matrix representation 

– Transient and stationary state of the process 
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Markov processes 
• Stochastic process  

– pi(t)=P(X(t)=i) 
• The process is a Markov process if the future of the process depends on the 

current state only (not on the past) - Markov property 
– P(X(tn+1)=j | X(tn)=i, X(tn-1)=l, …, X(t0)=m) = P(X(tn+1)=j | X(tn)=i) 

– Homogeneous Markov process: the probability of state change is unchanged 

by time shift, depends only on the time interval   

P(X(tn+1)=j | X(tn)=i) = pij(tn+1-tn) 

• Markov chain: if the state space is discrete  

– A homogeneous Markov chain can be represented by a graph: 

• States: nodes 

• State changes: edges 1 0 M 
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Continuous-time Markov chains 
(homogeneous case)  

• Continuous time, discrete space stochastic process, with 
Markov property, that is: 
 
 
 
 

• State transition can happen in any point of time 
• Example:  

– number of packets waiting at the output buffer of a router 
– number of customers waiting in a bank 

 
• The time spent in a state has to have memoryless distribution  

(exponential) to ensure Markov property: 
– the probability of moving from state i to state j sometime 

between tn  and tn+1 does not depend on the time the process 
already spent in state i before tn. 
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Continuous-time Markov chains 
(homogeneous case)  

• Let us see some examples, that may be modelled by Continuous Time 
Markov Chain 

• Stochastic process: discrete state space, continuous time 
 

• I use my phone, for 5 minutes in average, then I do not use it for 30 
minutes in average, then I use it again…. 

• The copies of the course binder are sold one by one 
• Packets arrive to an output buffer, and are served one by one 

 
• Define the states 
• List the conditions to have a Markovian model 
• Define the possible transitions among the states 
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Continuous-time Markov chains 
(homogeneous case)  

• State change probability: P(X(tn+1)=j | X(tn)=i) = pij(tn+1-tn) 
 

• Characterize the Markov chain with the state  transition rates instead: 
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Summary 
• Poisson process: 

– number of events in a time interval has Poisson distribution 
– time intervals between events has exponential distribution 
– The exponential distribution is memoryless 

• Markov process: 
– stochastic process 
– future depends on the present state only, the Markov property 

• Continuous-time Markov-chains (CTMC) 
– state transition intensity matrix 

• Next lecture 
– CTMC transient and stationary solution 
– global and local balance equations 
– birth-death process and revisit Poisson process  
– Markov chains and queuing systems 
– discrete time Markov chains 

 
 


	EP2200 Queuing theory and teletraffic systems ��2nd lecture ��Poisson process�Markov process
	Course outline
	Outline for today
	Recall from previous lecture
	Stochastic process
	Outline for today
	Poisson process
	Poisson process
	Poisson process
	 The memoryless property
	Exponential distribution and �memoryless property
	Poisson process and exponential distribution
	Group work
	Properties of the Poisson process�(See also problem set 2)
	Outline for today
	Markov processes
	Continuous-time Markov chains�(homogeneous case) 
	Continuous-time Markov chains�(homogeneous case) 
	Continuous-time Markov chains�(homogeneous case) 
	Slide Number 20

