Chapter 3

Matrices and Linear transformations

A linear transformation acting on a Euclidian vector can be represented as a matrix. Many of the concepts we introduce in this chapter generalize to linear operators acting on functions in infinite dimensional spaces, which is fundamental for the study of partial differential equations.

3.1 Matrix algebra

Linear transformation as a matrix

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear transformation, or linear map, if
(i) $f(x+z)=f(x)+f(z)$,
(ii) $f(\alpha x)=\alpha f(x)$,
for all $x, z \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$. In the standard basis $\left(e_{1}, \ldots, e_{n}\right)$ we can express the i th component of the vector $y=f(x) \in \mathbb{R}^{n}$ as

$$
y_{i}=f_{i}(x)=f_{i}\left(\sum_{j=1}^{n} x_{j} e_{j}\right)=\sum_{j=1}^{n} x_{j} f_{i}\left(e_{j}\right),
$$

where $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ for all $i=1, \ldots, n$. In component form, we write this as

$$
\begin{gather*}
y_{1}=a_{11} x_{1}+\ldots+a_{1 n} x_{n} \\
\vdots \tag{3.1}\\
y_{n}=a_{n 1} x_{1}+\ldots+a_{n n} x_{n}
\end{gather*}
$$

with $a_{i j}=f_{i}\left(e_{j}\right)$. That is $y=A x$, where A is an $n \times n$ matrix

$$
A=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \tag{3.2}\\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right]
$$

The set of real valued $m \times n$-matrices defines a vector space $\mathbb{R}^{m \times n}$, by the basic operations of (i) component-wise matrix addition and (ii) component-wise scalar multiplication. A matrix $A \in \mathbb{R}^{m \times n}$ also defines a linear map $x \mapsto A x$, by the basic operations of the matrix-vector product and component-wise scalar multiplication.

$$
\begin{array}{cl}
A(x+y)=A x+A y, & x, y \in \mathbb{R}^{n} \\
A(\alpha x)=\alpha A x, & x \in \mathbb{R}^{n}, \alpha \in \mathbb{R} .
\end{array}
$$

Matrix-vector product

In index notation we write a vector $b=\left(b_{i}\right)$, and a matrix $A=\left(a_{i j}\right)$, with i the row index and j is the column index. For an $m \times n$ matrix A, and x an n-dimensional column vector, we define the matrix-vector product $b=A x$ to be the m-dimensional column vector

$$
\begin{equation*}
b_{i}=\sum_{j=1}^{n} a_{i j} x_{j}, \quad i=1, \ldots, m \tag{3.3}
\end{equation*}
$$

With a_{j} the j th column of A, an m-vector, we can express the matrixvector product as a linear combination of the set of column vectors $\left\{a_{j}\right\}_{j=1}^{n}$

$$
\begin{equation*}
b=A x=\sum_{j=1}^{n} x_{j} a_{j}, \tag{3.4}
\end{equation*}
$$

or in matrix form

$$
[b]=\left[a_{1}\left|a_{2}\right| \cdots \mid a_{n}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1}\left[a_{1}\right]+x_{2}\left[a_{2}\right]+\ldots+x_{n}\left[a_{n}\right]
$$

The vector space spanned by $\left\{a_{j}\right\}_{j=1}^{n}$ is the column space, or range, of the matrix A, so that range $(A)=\operatorname{span}\left\{a_{j}\right\}_{j=1}^{n}$. The null space, or kernel,
of an $m \times n$ matrix A is the set of vectors $x \in \mathbb{R}^{n}$ such that $A x=0$, with 0 the zero vector in \mathbb{R}^{m}, that is $\operatorname{null}(A)=\left\{x \in \mathbb{R}^{n}: A x=0\right\}$.

The dimension of the column space is the column rank of the matrix, $\operatorname{rank}(A)$. We note that the column rank is equal to the row rank, corresponding to the space spanned by the row vectors of A, and the maximal rank of an $m \times n$ matrix is $\min (m, n)$, which we refer to as full rank.

Matrix-matrix product

The matrix-matrix product $B=A C$ is a matrix in $\mathbb{R}^{l \times n}$, defined for two matrices $A \in \mathbb{R}^{l \times m}$ and $C \in \mathbb{R}^{m \times n}$, as

$$
\begin{equation*}
b_{i j}=\sum_{k=1}^{m} a_{i k} c_{k j}, \tag{3.5}
\end{equation*}
$$

with $B=\left(b_{i j}\right), A=\left(a_{i k}\right)$ and $C=\left(c_{k j}\right)$. Here we may sometimes omit the summation sign and use the Einstein convention where repeated indices imply summation over those same indices, so that we can express the matrix-matrix product (3.5) as $b_{i j}=a_{i k} c_{k j}$.

Similarly as for the matrix-vector product, we may interpret the columns b_{j} of the matrix-matrix product B as a linear combination of the columns a_{k} with coefficients $c_{k j}$

$$
\begin{equation*}
b_{j}=A c_{j}=\sum_{k=1}^{m} c_{k j} a_{k}, \tag{3.6}
\end{equation*}
$$

or in matrix form

$$
\left[\begin{array}{l|l|l|l}
b_{1} & b_{2} & \cdots & b_{n} \\
& & & \\
& & & \\
& & & \\
& & & \\
2 & \cdots & a_{m} \\
& & & c_{1} \\
c_{2} & \cdots & c_{n}
\end{array}\right] .
$$

For two linear transformations $f(x)$ and $g(x)$ on \mathbb{R}^{n}, with associated square $n \times n$-matrices A and C, the matrix-matrix product $A C$ corresponds to the composition $f \circ g(x)=f(g(x))$.

Matrix transpose and the inner and outer products

The transpose (or adjoint) of an $m \times n$ matrix $A=\left(a_{i j}\right)$ is defined as the matrix $A^{T}=\left(a_{j i}\right)$, with the column and row indices reversed.

Using the matrix transpose, the inner product of two vectors $v, w \in \mathbb{R}^{n}$ can be expressed in terms of a matrix-matrix product $v^{T} w$, as

$$
(v, w)=v^{T} w=\left[\begin{array}{lll}
v_{1} & \ldots & v_{n}
\end{array}\right]\left[\begin{array}{c}
w_{1} \tag{3.7}\\
\vdots \\
w_{m}
\end{array}\right]=v_{1} w_{1}+\ldots+v_{n} w_{n} .
$$

Similarly, the outer product, or tensor product, of two vectors $v, w \in \mathbb{R}^{n}$, denoted by $v \otimes w$, is defined as the $m \times n$ matrix corresponding to the matrix-matrix product $v w^{T}$, that is

$$
v \otimes w=v w^{T}=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{m}
\end{array}\right]\left[\begin{array}{lll}
w_{1} & \cdots & w_{n}
\end{array}\right]=\left[\begin{array}{ccc}
v_{1} w_{1} & \cdots & v_{1} w_{n} \\
\vdots & & \vdots \\
& & \\
v_{m} v_{1} & & v_{m} w_{n}
\end{array}\right] .
$$

In tensor notation we can express the inner and the outer products as $(v, w)=v_{i} w_{i}$ and $v \otimes w=v_{i} w_{j}$.

The transpose has the property that $(A B)^{T}=B^{T} A^{T}$, and thus satisfies the equation $(A x, y)=\left(x, A^{T} y\right)$, for any $x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}$, which follows from the definition of the inner product in Euclidian vector spaces, since

$$
\begin{equation*}
(A x, y)=(A x)^{T} y=x^{T} A^{T} y=\left(x, A^{T} y\right) . \tag{3.8}
\end{equation*}
$$

A is said to be symmetric (or self-adjoint) if $A=A^{T}$, so that $(A x, y)=$ $(x, A y)$. If in addition $(A x, x)>0$ for all non-zero $x \in \mathbb{R}^{m}$, we say that A is a symmetric positive definite matrix. A matrix is said to be normal if $A^{T} A=A A^{T}$.

Matrix norms

To measure the size of a matrix, we first introduce the Frobenius norm, corresponding to the l_{2}-norm of the matrix A interpreted as an $m n$-vector, that is

$$
\begin{equation*}
\|A\|_{F}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2} \tag{3.9}
\end{equation*}
$$

The Frobenius norm is the norm associated to the following inner product over the space $\mathbb{R}^{m \times n}$,

$$
\begin{equation*}
(A, B)=\operatorname{tr}\left(A^{T} B\right) \tag{3.10}
\end{equation*}
$$

with the trace of a square $n \times n$ matrix $C=\left(c_{i j}\right)$ defined by

$$
\begin{equation*}
\operatorname{tr}(C)=\sum_{i=1}^{n} c_{i i} . \tag{3.11}
\end{equation*}
$$

Figure 3.1: Illustration of the map $x \mapsto A x$ through the unit circles $\|x\|_{2}=1$ (left) and $\|A\|_{2}=1$ (right), for the matrix A in (3.13).

Matrix norms for $A \in \mathbb{R}^{m \times n}$ are also induced by the respective l_{p}-norms on \mathbb{R}^{m} and \mathbb{R}^{n}, in the form

$$
\begin{equation*}
\|A\|_{p}=\sup _{\substack{x \in \mathbb{R}^{n} \\ x \neq 0}} \frac{\|A x\|_{p}}{\|x\|_{p}}=\sup _{\substack{x \in \mathbb{R}^{n} \\\|x\|_{p}=1}}\|A x\|_{p} . \tag{3.12}
\end{equation*}
$$

The last equality follows from the definition of a norm, and shows that the induced matrix norm can be defined in terms of its map of unit vectors, which we illustrate in Figure 3.1 and Figure 3.2 for the matrix

$$
A=\left[\begin{array}{ll}
1 & 2 \tag{3.13}\\
0 & 2
\end{array}\right]
$$

Determinant

The determinant of a square matrix A is $\operatorname{denoted} \operatorname{det}(A)$ or $|A|$. For a 2×2 matrix we have the explicit formula

$$
\operatorname{det}(A)=\left|\begin{array}{ll}
a & b \tag{3.14}\\
c & d
\end{array}\right|=a d-b c
$$

For example, for the matrix in (3.13) we have that $\operatorname{det}(A)=1 \cdot 2-2 \cdot 0=2$.

The formula for the determinant is extended to a 3×3 matrix by

$$
\begin{align*}
\operatorname{det}(A) & =\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=a\left|\begin{array}{ll}
e & f \\
h & i
\end{array}\right|-b\left|\begin{array}{ll}
d & f \\
g & i
\end{array}\right|+c\left|\begin{array}{ll}
d & e \\
g & h
\end{array}\right| \\
& =a(e i-f h)-b(d i-f g)+c(d h-e g), \tag{3.15}
\end{align*}
$$

and by recursion this formula can be generalized to any square matrix.
For a 2×2 matrix the absolute value of the determinant equals to the area of the parallelogram that represents the image of the unit square under the map $x \mapsto A x$, and similarly for a 3×3 matrix the volume of the mapped parallelepiped from the unit cube. More generally, the absolute value of the determinant represents a scale factor of the linear transformation A.

Figure 3.2: The map $x \mapsto A x$ (right) of the unit square (left), for the matrix A in (3.13), with the corresponding area given by $|\operatorname{det}(A)|=2$.

Matrix inverse

If the column vectors $\left\{a_{j}\right\}_{j=1}^{n}$ of a square $n \times n$ matrix form a basis for \mathbb{R}^{n}, then all vectors $b \in \mathbb{R}^{n}$ can be expressed as $b=A x$, where $x \in \mathbb{R}^{n}$ is the vector of coordinates of b in the basis $\left\{a_{j}\right\}_{j=1}^{n}$. In particular, all $x \in \mathbb{R}^{n}$ can be expressed as $x=I x$, where I is the square $n \times n$ identity matrix in \mathbb{R}^{n}, taking the standard basis as column vectors,

$$
I=\left[e_{1}\left|e_{2}\right| \cdots \mid e_{n}\right]=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & \cdots & 0 & 1
\end{array}\right] .
$$

A square matrix $A \in \mathbb{R}^{n \times n}$ is invertible, or non-singular, if there exists an inverse matrix $A^{-1} \in \mathbb{R}^{n \times n}$ such that $A^{-1} A=A A^{-1}=I$, which also means that $\left(A^{-1}\right)^{-1}=A$. Further, for two matrices A and B we have the property that $(A B)^{-1}=B^{-1} A^{-1}$.

Theorem 4. For a square matrix $A \in \mathbb{R}^{n \times n}$, the following is equivalent:
(i) A has an inverse A^{-1},
(ii) $\operatorname{det}(A) \neq 0$,
(iii) $\operatorname{rank}(A)=n$,
(iv) $\operatorname{range}(A)=\mathbb{R}^{n}$
(v) $\operatorname{null}(A)=\{0\}$.

The matrix inverse is unique. To see this, assume that there exist two matrices B_{1} and B_{2} such that $A B_{1}=A B_{2}=I$; which by linearity gives that $A\left(B_{1}-B_{2}\right)=0$, but since $\operatorname{null}(A)=\{0\}$ we have that $B_{1}=B_{2}$.

3.2 Some linear transformations

Affine transformations

An affine transformation, or affine map, is a linear transformation composed with a translation, corresponding to a matrix multiplication followed by vector addition. For example, counter-clockwise rotation of a vector by an angle θ in \mathbb{R}^{2}, takes the form of multiplication by a Givens rotation matrix,

$$
A=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \tag{3.16}\\
\sin (\theta) & \cos (\theta)
\end{array}\right],
$$

whereas translation corresponds to addition by a position vector b, so that the affine map takes the form $x \mapsto A x+b$.

We note that any triangle is related to each other through an affine map; for example in the Euclidian plane \mathbb{R}^{2}, or to a surface (manifold) in Euclidian space \mathbb{R}^{3}, see Figure 3.3.

Remark 1. We note that by using homogeneous coordinates, or projective coordinates, we can express any affine transformation as a matrix multiplication, including translation. In \mathbb{R}^{2} a vector $x=\left(x_{1}, x_{2}\right)^{T}$ in standard

Figure 3.3: Affine maps $x \mapsto A x+b$ of the reference triangle with corners in $(0,0),(1,0),(0,1)$; in \mathbb{R}^{2} (left); to a surface (manifold) in \mathbb{R}^{3} (right).

Cartesian coordinates, is represented as $x=\left(x_{1}, x_{2}, 1\right)^{T}$ in homogeneous coordinates, so that the rotation matrix takes the form

$$
A=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \tag{3.17}\\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right],
$$

and translation by a vector $\left(t_{1}, t_{2}\right)$ is expressed by the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & t_{1} \tag{3.18}\\
0 & 1 & t_{2} \\
0 & 0 & 1
\end{array}\right]
$$

Difference and summation matrices

Subdivide the interval $[0,1]$ into a structured grid with m intervals and $m+1$ nodes x_{i}, such that $0=x_{0}<x_{1}<x_{2}<\ldots<x_{m}=1$, with a constant interval length $h=x_{i}-x_{i-1}$, so that $x_{i}=x_{0}+i h$.

For each $x=x_{i}$ we may approximate the integral of a function $f(x)$ with $f(0)=0$, by a rectangular quadrature rule, so that

$$
\begin{equation*}
F\left(x_{i}\right)=\int_{0}^{x_{i}} f(s) d s \approx \sum_{k=1}^{i} f\left(x_{k}\right) h=F_{h}\left(x_{i}\right) \tag{3.19}
\end{equation*}
$$

which defines a function $F_{h}\left(x_{i}\right)$ for all nodes x_{i} in the subdivision. This linear transformation of the vector of sampled function values at the nodes
$y=\left(f\left(x_{1}\right), \ldots, f\left(x_{m}\right)\right)^{T}$ can be expressed in the following matrix equation,

$$
L_{h} y=\left[\begin{array}{cccc}
h & 0 & \cdots & 0 \tag{3.20}\\
h & h & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
h & h & \cdots & h
\end{array}\right]\left[\begin{array}{c}
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
\vdots \\
f\left(x_{m}\right)
\end{array}\right]=\left[\begin{array}{c}
f\left(x_{1}\right) h \\
f\left(x_{1}\right) h+f\left(x_{2}\right) h \\
\vdots \\
\sum_{k=1}^{m} f\left(x_{k}\right) h
\end{array}\right]
$$

where L_{h} is a summation matrix, with its inverse given by

$$
L_{h}=h\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \tag{3.21}\\
1 & 1 & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right], \quad L_{h}^{-1}=h^{-1}\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
-1 & 1 & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & \cdots & -1 & 1
\end{array}\right] .
$$

The inverse matrix L_{h}^{-1} corresponds to a difference matrix over the same subdivision. To see this, multiply the matrix L_{h}^{-1} to $y=f\left(x_{i}\right)$,

$$
L_{h}^{-1} y=h^{-1}\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \tag{3.22}\\
-1 & 1 & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & \cdots & -1 & 1
\end{array}\right]\left[\begin{array}{c}
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
\vdots \\
f\left(x_{m}\right)
\end{array}\right]=\left[\begin{array}{c}
f\left(x_{1}\right) / h \\
\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right) / h \\
\vdots \\
\left(f\left(x_{m}\right)-f\left(x_{m-1}\right)\right) / h
\end{array}\right] .
$$

Figure 3.4: Rectangular rule quadrature (left) and finite difference approximation (right) on a subdivision of $[0,1]$ with interval length h.

As the interval length $h \rightarrow 0$, the summation and difference matrices converge to integral and differential operators, such that for each $x \in(0,1)$,

$$
\begin{equation*}
L_{h} y \rightarrow \int_{0}^{x} f(s) d s, \quad L_{h}^{-1} y \rightarrow f^{\prime}(x) . \tag{3.23}
\end{equation*}
$$

Further, we have for the product of the two matrices that

$$
\begin{equation*}
y=L_{h} L_{h}^{-1} y \rightarrow f(x)=\int_{a}^{x} f^{\prime}(s) d s \tag{3.24}
\end{equation*}
$$

as $h \rightarrow 0$, which corresponds to the Fundamental theorem of Calculus.

Difference operators

The matrix L_{h}^{-1} in (3.21) corresponds to a backward difference operator D_{h}^{-}, and similarly we can define a forward difference operator D_{h}^{+}, by

$$
D_{h}^{-}=h^{-1}\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
-1 & 1 & 0 & \cdots & 0 \\
\vdots & & & \ddots & \vdots \\
0 & \cdots & -1 & 1 & 0 \\
0 & \cdots & 0 & -1 & 1
\end{array}\right], \quad D_{h}^{+}=h^{-1}\left[\begin{array}{ccccc}
-1 & 1 & 0 & \cdots & 0 \\
0 & -1 & 1 & \cdots & 0 \\
\vdots & & & \ddots & \vdots \\
0 & \cdots & 0 & -1 & 1 \\
0 & \cdots & 0 & 0 & -1
\end{array}\right] .
$$

The matrix-matrix product $D_{h}^{+} D_{h}^{-}$takes the form,

$$
D_{h}^{+} D_{h}^{-}=h^{-2}\left[\begin{array}{ccccc}
-1 & 1 & 0 & \cdots & 0 \tag{3.25}\\
1 & -2 & 1 & \cdots & 0 \\
\vdots & & & \ddots & \vdots \\
0 & \cdots & 1 & -2 & 1 \\
0 & \cdots & 0 & 1 & -2
\end{array}\right]
$$

which corresponds to an approximation of a second order differential operator. The matrix $A=-D_{h}^{+} D_{h}^{-}$is diagonally dominant, that is

$$
\begin{equation*}
\left|a_{i i}\right| \geq \sum_{j \neq i}\left|a_{i j}\right| \tag{3.26}
\end{equation*}
$$

and symmetric positive definite, since

$$
\begin{aligned}
x^{T} A x & =\ldots+x_{i}\left(-x_{i-1}+2 x_{i}-x_{i+1}\right)+\ldots+x_{n}\left(-x_{n-1}+2 x_{n}\right) \\
& =\ldots-x_{i} x_{i-1}+2 x_{i}^{2}-x_{i} x_{i+1}-x_{i+1} x_{i}+\ldots-x_{n-1} x_{n}+2 x_{n}^{2} \\
& =\ldots+\left(x_{i}-x_{i-1}\right)^{2}+\left(x_{i+1}-x_{i}\right)^{2}+\ldots+x_{n}^{2}>0
\end{aligned}
$$

for any non-zero vector x.
Since the second order difference matrix $A=-\left(D_{h}^{+} D_{h}^{-}\right)$is symmetric positive definite, there exists a unique invers A^{-1}. For example, in the case
of a 5×5 matrix we have that

$$
A=1 / h^{2}\left[\begin{array}{ccccc}
2 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 2
\end{array}\right], \quad A^{-1}=h^{2} / 6\left[\begin{array}{lllll}
5 & 4 & 3 & 2 & 1 \\
4 & 8 & 6 & 4 & 2 \\
3 & 6 & 9 & 6 & 3 \\
2 & 4 & 6 & 8 & 4 \\
1 & 2 & 3 & 4 & 5
\end{array}\right],
$$

where we note that while the second order difference operator A is a sparse matrix with only few non-zero elements, the inverse A^{-1} is a full matrix without zero elements, corresponding to a weighted integral (summation) operator.

The finite difference method

For a vector $y=u\left(x_{i}\right)$, the i th row of the matrix $D_{h}^{+} D_{h}^{-}$corresponds to a finite difference stencil, with $u\left(x_{i}\right)$ function values sampled at the nodes x_{i} of the structured grid representing the subdivision of the interval $I=(0,1)$,

$$
\begin{aligned}
{\left[\left(D_{h}^{+} D_{h}^{-}\right) y\right]_{i} } & =\frac{u\left(x_{i+1}\right)-2 u\left(x_{i}\right)+u\left(x_{i-1}\right)}{h^{2}} \\
& =\frac{\frac{u\left(x_{i+1}\right)-u\left(x_{i}\right)}{h}-\frac{u\left(x_{i}\right)-u\left(x_{i-1}\right)}{h}}{h}
\end{aligned}
$$

Similarly, the difference operators D_{h}^{-}and D_{h}^{+}correspond to finite difference stencils over the grid, and we have that for $x \in I$,

$$
\begin{equation*}
\left(D_{h}^{+} D_{h}^{-}\right) y \rightarrow u^{\prime \prime}(x), \quad\left(D_{h}^{-}\right) y \rightarrow u^{\prime}(x), \quad\left(D_{h}^{+}\right) y \rightarrow u^{\prime}(x), \tag{3.27}
\end{equation*}
$$

as the grid size $h \rightarrow 0$.
The finite difference method for solving differential equations is based on approximation of differential operators by such difference stencils over a grid. We can thus, for example, approximate the differential equation

$$
\begin{equation*}
-u^{\prime \prime}(x)+u(x)=f(x) \tag{3.28}
\end{equation*}
$$

by the matrix equation

$$
\begin{equation*}
-\left(D_{h}^{+} D_{h}^{-}\right) y+\left(D_{h}^{-}\right) y=b, \tag{3.29}
\end{equation*}
$$

with $b_{i}=f\left(x_{i}\right)$. The finite difference method extends to multiple dimensions, where the difference stencils are defined over structured Cartesian grids in \mathbb{R}^{2} or \mathbb{R}^{3}.

Figure 3.5: Example of finite difference stencils corresponding to the difference operator $-\left(D_{h}^{+} D_{h}^{-}\right)$over structured grids in \mathbb{R} (left) and \mathbb{R}^{2} (right).

Convolution

3.3 Orthogonal projectors

Orthogonal matrix

A square matrix $Q \in \mathbb{R}^{n \times n}$ is ortogonal, or unitary, if $Q^{T}=Q^{-1}$. With q_{j} the columns of Q we thus have that $Q^{T} Q=I$, or in matrix form,

$$
\left[\begin{array}{c}
q_{1} \\
\hline q_{2} \\
\hline q_{n}
\end{array}\right]\left[q_{1}\left|q_{2}\right| \cdots \mid q_{n}\right]=\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right]
$$

so that the columns q_{j} form an orthonormal basis for \mathbb{R}^{n}.
Multiplication by an orthogonal matrix preserves the angle between two vectors $x, y \in \mathbb{R}^{n}$, since

$$
\begin{equation*}
(Q x, Q y)=(Q x)^{T} Q y=x^{T} Q^{T} Q y=x^{T} y=(x, y) \tag{3.30}
\end{equation*}
$$

and thus also the length of a vector,

$$
\begin{equation*}
\|Q x\|=(Q x, Q x)^{1 / 2}=(x, x)^{1 / 2}=\|x\| . \tag{3.31}
\end{equation*}
$$

As a linear transformation an orthogonal matrix acts as a rotation or reflection, depending on the sign of the determinant which is always either 1 or -1 .

Orthogonal projector

A projection matrix, or projector, is a square matrix P such that

$$
\begin{equation*}
P^{2}=P P=P . \tag{3.32}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
P v=v, \tag{3.33}
\end{equation*}
$$

for all vectors $v \in \operatorname{range}(P)$, since v is of the form $v=P x$ for some x, and thus $P v=P^{2} x=P x=v$. For $v \notin \operatorname{range}(P)$ we have that $P(P v-v)=$ $P^{2} v-P v=0$, so that the projection error $P v-v \in \operatorname{null}(P)$.

The matrix $I-P$ is also a projector, the complementary projector to P, since $(I-P)^{2}=I-2 P+P^{2}=I-P$. The range and null space of the two projectors are related as range $(I-P)=\operatorname{null}(P)$ and range $(P)=$ $\operatorname{null}(I-P)$, so that P and $I-P$ separates \mathbb{R}^{n} into two subspaces S_{1} and S_{2}, since the only $v \in \operatorname{range}(P) \cap \operatorname{range}(I-P)$ is the zero vector; $v=v-P v=(I-P) v=\{0\}$.

If the two subspaces S_{1} and S_{2} are orthogonal, we say that P is an orthogonal projector. This is equivalent to the condition $P=P^{T}$, since the inner product between two vectors in S_{1} and S_{2} then vanish,

$$
(P x,(I-P) y)=(P x)^{T}(I-P) y=x^{T} P^{T}(I-P) y=x^{T}\left(P-P^{2}\right) y=0
$$

If P is an orthogonal projector, so is $I-P$. For example, the orthogonal projection $P_{y} x$ of one vector x in the direction of another vector y, its orthogonal complement $P^{\perp y} x$, and $P_{y}^{r} x$, its reflection in y, correspond to the projectors

$$
\begin{equation*}
P_{y}=\frac{y y^{T}}{\|y\|^{2}}, \quad P^{\perp y}=I-\frac{y y^{T}}{\|y\|^{2}}, \quad P_{y}^{r}=I-2 \frac{y y^{T}}{\|y\|^{2}} . \tag{3.34}
\end{equation*}
$$

Gram-Schmidt orthogonalization

For a square matrix $A \in \mathbb{R}^{n \times n}$ we denote the successive vector spaces spanned by its column vectors a_{j} as

$$
\begin{equation*}
\left\langle a_{1}\right\rangle \subseteq\left\langle a_{1}, a_{2}\right\rangle \subseteq\left\langle a_{1}, a_{2}, a_{3}\right\rangle \subseteq \ldots \subseteq\left\langle a_{1}, \ldots, a_{m}\right\rangle \tag{3.35}
\end{equation*}
$$

Assuming that A has full rank, we now ask if we for each such vector space can construct an orthonormal basis q_{j} such that $\left\langle q_{1}, \ldots, q_{j}\right\rangle=\left\langle a_{1}, \ldots, a_{j}\right\rangle$, for all $j \leq n$.

Figure 3.6: The projector $P_{y} x$ of one vector x in the direction of another vector y, its orthogonal complement $P^{\perp y} x$, and the reflector $P_{y}^{r} x$.

Given a_{j}, we can successively construct vectors v_{j} that are orthogonal to the spaces $\left\langle q_{1}, \ldots, q_{j-1}\right\rangle$, since by (2.13) we have that

$$
\begin{equation*}
v_{j}=a_{j}-\sum_{i=1}^{j-1}\left(a_{j}, q_{i}\right) q_{i} \tag{3.36}
\end{equation*}
$$

for all $j=1, \ldots, n$, where each vector is then normalized to get $q_{j}=v_{j} /\left\|v_{j}\right\|$. This is the classical Gram-Schmidt iteration.

With \hat{Q}_{j-1} the $n \times j-1$ matrix consiting of the orthogonal column vectors q_{i}, we can rewrite (3.36) in terms of an orthogonal projector P_{j},

$$
v_{j}=a_{j}-\sum_{i=1}^{j-1}\left(a_{j}, q_{i}\right) q_{i}=a_{j}-\sum_{i=1}^{j-1} q_{i} q_{i}^{T} a_{j}=\left(I-\hat{Q}_{j-1} \hat{Q}_{j-1}^{T}\right) a_{j}=P_{j} a_{j}
$$

with $\hat{Q}_{j-1} \hat{Q}_{j-1}^{T}$ an orthogonal projector onto range $\left(\hat{Q}_{j-1}\right)$, the column space of \hat{Q}_{j-1}, and $P_{j}=I-\hat{Q}_{j-1} \hat{Q}_{j-1}^{T}$ an orthogonal projector onto the space orthogonal to range $\left(\hat{Q}_{j-1}\right)$, with $P_{1}=I$. Thus the Gram-Schmidt iteration can be expressed in terms of the projector P_{j} as $q_{j}=P_{j} a_{j} /\left\|P_{j} a_{j}\right\|$, for $j=1, \ldots, n$.

Alternatively, P_{j} can be constructed by successive multiplication of projectors $P^{\perp q_{i}}=I-q_{i} q_{i}^{T}$, orthogonal to each individual vector q_{i}, such that

$$
\begin{equation*}
P_{j}=P^{\perp q_{j-1}} \cdots P^{\perp q_{2}} P^{\perp q_{1}} \tag{3.37}
\end{equation*}
$$

The modified Gram-Schmidt iteration corresponds to instead using this formula to construct P_{j}, which leads to a more robust algorithm that the classical Gram-Schmidt iteration.

```
Algorithm 1: Modified Gram-Schmidt iteration
    for \(i=1\) to \(n\) do
    | \(v_{i}=a_{i}\)
    end
    for \(i=1\) to \(n\) do
        \(r_{i i}=\left\|v_{i}\right\|\)
        \(q_{i}=v_{i} / r_{i i}\)
        for \(j=1\) to \(i+1\) do
            \(r_{i j}=q_{i}^{T} v_{j}\)
            \(v_{j}=v_{j}-r_{i j} q_{i}\)
        end
    end
```


3.4 QR factorization

By introducing the notation $r_{i j}=\left(a_{j}, q_{i}\right)$ and $r_{i i}=\left\|a_{j}-\sum_{i=1}^{j-1}\left(a_{j}, q_{i}\right) q_{i}\right\|$, we can rewrite the Gram-Schmidt iteration (3.36) as

$$
\begin{align*}
a_{1}= & r_{11} q_{1} \\
a_{2}= & r_{12} q_{1}+r_{22} q_{2} \tag{3.38}\\
& \vdots \\
a_{n}= & r_{1 n} q_{1}+\ldots+r_{2 n} q_{n}
\end{align*}
$$

which corresponds to the $Q R$ factorization $A=Q R$, with Q an orthogonal matrix and R an upper triangular matrix, that is

$$
\left[\begin{array}{l|l|l|l}
& & & \\
a_{1} & a_{2} & \cdots & a_{n} \\
& & & \\
& & & \\
& q_{1} & \cdots & q_{n} \\
& & &
\end{array}\right]\left[\begin{array}{cccc}
r_{11} & r_{12} & \cdots & r_{1 n} \\
& r_{22} & & \\
& & \ddots & \vdots \\
& & & r_{n n}
\end{array}\right] .
$$

Existence and uniqueness of the QR factorization of a non-singular matrix A follows by construction from Algorithm 1.

The modified Gram-Schmidt iteration of Algorithm 1 corresponds to successive multiplication of upper triangular matrices R_{k} on the right of the matrix A, such that the resulting matrix Q is an orthogonal matrix,

$$
\begin{equation*}
A R_{1} R_{2} \cdots R_{n}=Q \tag{3.39}
\end{equation*}
$$

and with the notation $R^{-1}=R_{1} R_{2} \cdots R_{n}$, the matrix $R=\left(R^{-1}\right)^{-1}$ is also an upper triangular matrix.

3.5 Exercises

Problem 8. Prove the equivalence of the definitions of the induced matrix norm, defined by

$$
\begin{equation*}
\|A\|_{p}=\sup _{\substack{x \in \mathbb{R}^{n} \\ x \neq 0}} \frac{\|A x\|_{p}}{\|x\|_{p}}=\sup _{\substack{x \in \mathbb{R}^{n} \\\|x\|_{p}=1}}\|A x\|_{p} . \tag{3.40}
\end{equation*}
$$

