Chapter 2

Vector spaces

In this chapter we introduce the notion of a vector space which is fundamental for the approximation methods that we will later develop, in particular through the orthogonal projection onto a subspace representing the best possible approximation in that subspace. We use the Euclidian space as an illustrative example but the concept of a vector space is much more general than that, forming the basis for the theory of function approximation and partial differential equations.

2.1 Vector spaces

Vector space

We denote the elements of \mathbb{R}, the real numbers, as scalars, and a vector space, or linear space, is then defined by a set V and two basic operations on V : vector addition and scalar multiplication,
(i) $x, y \in V \Rightarrow x+y \in V$,
(ii) $x \in V, \alpha \in \mathbb{R} \Rightarrow \alpha x \in V$.

A vector space defined over \mathbb{R} is a real vector space. More generally we may define vector spaces over the complex numbers \mathbb{C}, or any algebraic field \mathbb{F}.

The Euclidian space \mathbb{R}^{n}

The Euclidian space \mathbb{R}^{n} is a vector space consisting of the set of column vectors $x=\left(x_{1}, \ldots, x_{n}\right)^{T}$, where $\left(x_{1}, \ldots, x_{n}\right)$ is a row vector with $x_{j} \in \mathbb{R}$, and where v^{T} denotes the transpose of the vector v. In \mathbb{R}^{n} the basic operations are defined by component-wise addition and multiplication, such that,
(i) $x+y=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)^{T}$,
(ii) $\alpha x=\left(\alpha x_{1}, \ldots, \alpha x_{n}\right)^{T}$.

A geometrical interpretation of a vector space will prove to be useful. For example, the vector space \mathbb{R}^{2} can be interpreted as the vector arrows in the Euclidian plane, defined by: (i) a direction with respect to a fixed point (origo), and (ii) a length (magnitude).

Figure 2.1: Geometrical interpretation of a vector $x=\left(x_{1}, x_{2}\right)$ in the Euclidian plane \mathbb{R}^{2} (left), scalar multiplication αx with $\alpha=0.5$ (center), and vector addition $x+y$ (right).

Vector subspace

A subspace of a vector space V is a subset $S \subset V$, such that S is a also vector space. For example, the planes $S_{1}=\left\{x \in \mathbb{R}^{3}: x_{3}=0\right\}$ and $S_{2}=\left\{x \in \mathbb{R}^{3}: a x_{1}+b x_{2}+c x_{3}+d=0: a, b, c, d \in \mathbb{R}\right\}$ are subspaces of \mathbb{R}^{3}.

Basis

The sum $\sum_{i=1}^{n} \alpha_{i} v_{i}$ is referred to as a linear combination of the set of vectors $\left\{v_{i}\right\}_{i=1}^{n}$ in V. All possible linear combinations defines a subspace $S=\{v \in$ $\left.V: v=\sum_{i=1}^{n} \alpha_{i} v_{i}, \alpha_{i} \in \mathbb{R}\right\}$, and we say that the vector space S is spanned by the set of vectors $\left\{v_{i}\right\}_{i=1}^{n}$, denoted by $S=\operatorname{span}\left\{v_{i}\right\}_{i=1}^{n}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$.

The set $\left\{v_{i}\right\}_{i=1}^{n}$ is linearly independent, if

$$
\begin{equation*}
\sum_{i=1}^{n} \alpha_{i} v_{i}=0 \Rightarrow \alpha_{i}=0, \forall i=1, \ldots, n \tag{2.1}
\end{equation*}
$$

Figure 2.2: Illustration of the Euclidian space \mathbb{R}^{3} with the three coordinate axes in the direction of the standard basis vectors e_{1}, e_{2}, e_{3}, and two subspaces S_{1} and S_{2}, where S_{1} is the $x_{1} x_{2}$-plane and S_{2} a generic plane in \mathbb{R}^{3}, with the indicated planes extending to infinity.

A linearly independent set $\left\{v_{i}\right\}_{i=1}^{n}$ is a basis for the vector space V, if all $v \in V$ can be expressed as a linear combination of the vectors in the basis,

$$
\begin{equation*}
v=\sum_{i=1}^{n} \alpha_{i} v_{i} \tag{2.2}
\end{equation*}
$$

where α_{i} are the coordinates of v with respect to the basis $\left\{v_{i}\right\}_{i=1}^{n}$. The dimension of $V, \operatorname{dim}(V)$, is the number of vectors in any basis for V.

The standard basis $\left\{e_{1}, \ldots, e_{n}\right\}=\left\{(1,0, \ldots, 0)^{T}, \ldots,(0, \ldots, 0,1)^{T}\right\}$ spans \mathbb{R}^{n}, such that all $x \in \mathbb{R}^{n}$ can be expressed as $x=\sum_{i=1}^{n} x_{i} e_{i}$. We refer to the coordinates $x_{i} \in \mathbb{R}$ in the standard basis as Cartesian coordinates, and $\operatorname{dim} \mathbb{R}^{n}=n$

Norm

To measure the size of vectors we introduce the norm $\|\cdot\|$ of a vector in the vector space V, defined by the following conditions:
(i) $\|x\| \geq 0, \forall x \in V$, and $\|x\|=0 \Leftrightarrow x=0$,
(ii) $\|\alpha x\|=|\alpha|\|x\|, \forall x \in V, \alpha \in \mathbb{R}$,
(iii) $\|x+y\| \leq\|x\|+\|y\|, \forall x, y \in V$,
where (iii) is the triangle inequality.
A normed vector space is a vector space on which a norm is defined. For example, we define the l_{2}-norm in \mathbb{R}^{n} by

$$
\begin{equation*}
\|x\|_{2}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}=\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)^{1 / 2} \tag{2.3}
\end{equation*}
$$

which corresponds to the Euclidian length of the vector x.

Inner product

An inner product in a vector space V is a real valued function (\cdot, \cdot) which is bilinear and symmetric, that is,
(i) $(\alpha x+\beta y, z)=\alpha(x, z)+\beta(y, z)$,
(ii) $(x, \alpha y+\beta z)=\alpha(x, y)+\beta(x, z)$,
(iii) $(x, y)=(y, x)$,
for all $x, y, z \in V$ and $\alpha, \beta \in \mathbb{R}$.
An inner product space is a vector space on which an inner product is defined. An inner product induces an associated norm by $\|x\|=(x, x)^{1 / 2}$, and thus an inner product space is also a normed space. An inner product and its associated norm satisfies the Cauchy-Schwarz inequality.

Theorem 1 (Cauchy-Schwarz inequality).

$$
\begin{equation*}
|(x, y)| \leq\|x\|\|y\|, \quad \forall x, y \in V \tag{2.4}
\end{equation*}
$$

Proof. Let $s \in \mathbb{R}$ so that

$$
0 \leq\|x+s y\|^{2}=(x+s y, x+s y)=\|x\|^{2}+2 s(x, y)+s^{2}\|y\|^{2},
$$

and then choose s as the minimizer of the right hand side of the inequality, that is, $s=-(x, y) /\|y\|^{2}$, which proves the theorem.

The Euclidian space \mathbb{R}^{n} is an inner product space with the Euclidian inner product, also referred to as scalar product or dot product, defined by

$$
\begin{equation*}
(x, y)_{2}=x \cdot y=\left(x_{1} y_{1}+\ldots+x_{n} y_{n}\right) \tag{2.5}
\end{equation*}
$$

which induces the l_{2}-norm $\|x\|_{2}=(x, x)_{2}^{1 / 2}$. In \mathbb{R}^{n} we often drop the subscript for the Euclidian inner product and norm, with the understanding that $(x, y)=(x, y)_{2}$ and $\|x\|=\|x\|_{2}$. We can also define general l_{p}-norms as

$$
\begin{equation*}
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / 2} \tag{2.6}
\end{equation*}
$$

for $1 \leq p<\infty$. For example, the l_{1}-norm is defined as $\|x\|_{1}=\left|x_{1}\right|+\ldots+\left|x_{n}\right|$. For $p=\infty$, we define the l_{∞}-norm as

$$
\begin{equation*}
\|x\|_{\infty}=\max _{1 \leq p \leq n}\left|x_{i}\right| . \tag{2.7}
\end{equation*}
$$

Figure 2.3: Illustration of the l_{p}-norms in \mathbb{R}^{n}, through the unit circles $\|x\|_{p}=1$, for $p=1,2, \infty$ (from left to right).

In fact, the Cauchy-Schwarz inequality is a special case of the Hölder inequality for general l_{p}-norms in \mathbb{R}^{n}.

Theorem 2 (Hölder inequality). For $1 / p+1 / q=1$, we have that

$$
\begin{equation*}
|(x, y)| \leq\|x\|_{p}\|y\|_{q}, \quad \forall x, y \in \mathbb{R}^{n} \tag{2.8}
\end{equation*}
$$

In particular, we have that $|(x, y)| \leq\|x\|_{1}\|y\|_{\infty}, \forall x, y \in \mathbb{R}^{n}$.

2.2 Orthogonal projections

Orthogonality

An inner product space V provides a means to generalize the concept of measuring angles between vectors, where in particular two vectors $x, y \in V$ are orthogonal if $(x, y)=0$.

If a vector $x \in V$ is orthogonal to all vectors s in a subspace $S \subset V$, so that

$$
(x, s)=0, \quad \forall s \in S
$$

then x is said to be orthogonal to S. For example, the vector $(0,0,1)^{T} \in \mathbb{R}^{3}$ is orthogonal to the subspace spanned in \mathbb{R}^{3} by the vectors $(1,0,0)^{T}$ and $(0,1,0)^{T}$.

We denote by S^{\perp} the orthogonal complement of S in V, that is $S^{\perp}=$ $\{v \in V:(v, s)=0, \forall s \in S\}$. The only vector in V that is an element of both S and S^{\perp} is the zero vector, and any vector $v \in V$ can be decomposed into two orthogonal components as $v=s_{1}+s_{2}$, with $s_{1} \in S$ and $s_{2} \in S^{\perp}$.

Orthogonal projection

The orthogonal projection of a vector $x \in V$ in the direction of another vector $y \in V$, is the vector βy with $\beta=(x, y) /\|y\|^{2} \in \mathbb{R}$, such that the difference between the two vectors is orthogonal to y, that is $(x-\beta y, y)=0$.

Figure 2.4: Illustration of βy, the projection of the x in the direction of y.

The orthogonal projection of a vector $v \in V$ onto the subspace $S \subset V$ is a vector $v_{s} \in S$ such that

$$
\begin{equation*}
\left(v-v_{s}, s\right)=0, \quad \forall s \in S . \tag{2.9}
\end{equation*}
$$

The orthogonal projection is the best approximation in the subspace $S \subset V$, with respect to the norm induced by the inner product of V.

Theorem 3 (Best approximation property).

$$
\begin{equation*}
\left\|v-v_{s}\right\| \leq\|v-s\|, \quad \forall s \in S \tag{2.10}
\end{equation*}
$$

Proof. For any vector $s \in S$ we have that
$\left\|v-v_{s}\right\|^{2}=\left(v-v_{s}, v-v_{s}\right)=\left(v-v_{s}, v-s\right)+\left(v-v_{s}, s-v_{s}\right)=\left(v-v_{s}, v-s\right)$,
since $\left(v-v_{s}, s-v_{s}\right)=0$, by (2.9) and the fact that $s-v_{s} \in S$. The result then follows from Cauchy-Schwarz inequality and division of both sides by the factor $\left\|v-v_{s}\right\|$,

$$
\left(v-v_{s}, v-s\right) \leq\left\|v-v_{s}\right\|\|v-s\| \Rightarrow\left\|v-v_{s}\right\| \leq\|v-s\| .
$$

Figure 2.5: The projection v_{s} is the best approximation in $S \subset V$.

Orthonormal basis

We refer to a set of non-zero vectors $\left\{v_{i}\right\}_{i=1}^{n}$ in the inner product space V as an orthogonal set, if all vectors v_{i} are pairwise orthogonal, that is if $\left(v_{i}, v_{j}\right)=0$ for all $i \neq j$. If $\left\{v_{i}\right\}_{i=1}^{n}$ is an orthogonal set in the subspace $S \subset V$ and $\operatorname{dim}(S)=n$, then $\left\{v_{i}\right\}_{i=1}^{n}$ is a basis for S , that is all $v_{s} \in S$ can be expressed as

$$
\begin{equation*}
v_{s}=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}=\sum_{i=1}^{n} \alpha_{i} v_{i} \tag{2.11}
\end{equation*}
$$

with the coordinate $\alpha_{i}=\left(v_{s}, v_{i}\right) /\left\|v_{i}\right\|^{2}$ being the projection of v_{s} in the direction of the basis vector v_{i}.

If $Q=\left\{q_{i}\right\}_{i=1}^{n}$ is an orthogonal set, and $\left\|q_{i}\right\|=1$ for all i, we say that Q is an orthonormal set. Let Q be an orthonormal basis for S, then

$$
\begin{equation*}
v_{s}=\left(v_{s}, q_{1}\right) q_{1}+\ldots+\left(v_{s}, q_{n}\right) q_{n}=\sum_{i=1}^{n}\left(v_{s}, q_{i}\right) q_{i}, \quad \forall v_{s} \in S, \tag{2.12}
\end{equation*}
$$

where the coordinate $\left(v_{s}, q_{i}\right)$ is the projection of the vector v_{s} onto the basis vector q_{i}. An arbitrary vector $v \in V$ can be written

$$
\begin{equation*}
v=r+\sum_{i=1}^{n}\left(v, q_{i}\right) q_{i} \tag{2.13}
\end{equation*}
$$

where $r=v-\sum_{i=1}^{n}\left(v, q_{i}\right) q_{i}$. With $v_{s}=\sum_{i=1}^{n}\left(v, q_{i}\right) q_{i}$, the vector $r=v-v_{s}$ is orthogonal to Q, and thus orthogonal to S. By (2.9), the vector $r \in V$ satisfies the orthogonality condition

$$
\begin{equation*}
(r, s)=0, \quad \forall s \in S, \tag{2.14}
\end{equation*}
$$

and from (2.10) we know that r is the vector that corresponds to the minimal projection error of the vector v onto S.

Excercises

Problem 1. Prove that the planes S_{1} and S_{2} are subspaces of \mathbb{R}^{3}, where $S_{1}=\left\{x \in \mathbb{R}^{3}: x_{3}=0\right\}$ and $S_{2}=\left\{x \in \mathbb{R}^{3}: a x_{1}+b x_{2}+c x_{3}+d=0:\right.$ $a, b, c, d \in \mathbb{R}\}$.

Problem 2. Prove that the standard basis in \mathbb{R}^{n} is linearly independent.
Problem 3. Prove that the Euclidian l_{2}-norm $\|\cdot\|_{2}$ is a norm.

Problem 4. Prove that the Euclidian scalar product $(\cdot, \cdot)_{2}$ is an inner product.

Problem 5. Prove that $|(x, y)| \leq\|x\|_{1}\|y\|_{\infty}, \forall x, y \in \mathbb{R}^{n}$.
Problem 6. Prove that the vector $(0,0,1)^{T} \in \mathbb{R}^{3}$ is orthogonal to the subspace spanned in \mathbb{R}^{3} by the vectors $(1,0,0)^{T}$ and $(0,1,0)^{T}$.

Problem 7. Let $\left\{w_{i}\right\}_{i=1}^{n}$ be a basis for the subspace $S \subset V$, so that all $s \in S$ can be expressed as $s=\sum_{i=1}^{n} \alpha_{i} w_{i}$.
(a) Prove that (2.9) is equivalent to finding the vector $v_{s} \in S$ that satisfies n equations of the form

$$
\left(v-v_{s}, w_{i}\right)=0, \quad i=1, \ldots, n
$$

(b) Since $v_{s} \in S$, we have that $v_{s}=\sum_{j=1}^{n} \beta_{j} w_{j}$. Prove that (2.9) is equivalent to finding the set of coordinates β_{i} that satisfies

$$
\sum_{j=1}^{n} \beta_{j}\left(w_{j}, w_{i}\right)=\left(v, w_{i}\right), \quad i=1, \ldots, n
$$

(c) Let $\left\{q_{i}\right\}_{i=1}^{n}$ be an orthonormal basis for the subspace $S \subset V$, so that we can express $v_{s}=\sum_{j=1}^{n} \beta_{j} q_{j}$. Prove that (2.9) is equivalent to choosing the coordinates as $\beta_{j}=\left(v, q_{j}\right)$.

