
ID1018 Programming I Exam: solution by Fadil Galjic 16 Jan 2017

1

Exam: solution

Tasks: solutions

Task 1 (3 points + 3 points)

a) (3 points)

b) (3points)

Task 2 (3 points + 3 points + 3 points)

a) (3 points)

public static Point nearestPoint (Point[] points, Point point)

{

 if (points.length == 0)

 throw new java.lang.IllegalArgumentException ("no points");

 Point nearestPoint = points[0];

 double minDistance = nearestPoint.distance (point);

 double distance = 0;

 for (int pos = 1; pos < points.length; pos++)

 {

 distance = points[pos].distance (point);

 if (distance < minDistance)

 {

 nearestPoint = points[pos];

 minDistance = distance;

 }

 }

 u

1 2 3

 v[0]

1

 v

0 0 1

 v[1]
0 1

 v[2]

1

1 1

ID1018 Programming I Exam: solution by Fadil Galjic 16 Jan 2017

2

 return nearestPoint;

}

b) (3 points)

public static Point[] internalPoints (Point[] points, double r)

{

 // the number of points in the circle

 int countInternalPoints = 0;

 for (Point p : points)

 if (p.getX () * p.getX () + p.getY () * p.getY () < r * r)

 countInternalPoints++;

 // the points that are in the circle

 Point[] internalPoints = new Point[countInternalPoints];

 int pos = 0;

 for (Point p : points)

 if (p.getX () * p.getX () + p.getY () * p.getY () < r * r)

 internalPoints[pos++] = p;

 return internalPoints;

}

c) (3 points)

Point[] points = { new Point (3, 4),

 new Point (1, 2),

 new Point (5, 6),

 new Point (4, 5) };

Point point = new Point (1, 1);

double radius = 7;

Point nearestPoint = nearestPoint (points, point);

Point[] internalPoints = internalPoints (points, radius);

Task 3 (3 points + 3 points + 3 points)

a) (3 points)

public String toString ()

{

 String s = "";

 for (int pos = 0; pos < courseCount; pos++)

 s = s + courses[pos] + "\n";

 return s;

}

b) (3 points)

public void remove (Course course)

{

 int courseIndex = -1;;

 for (int pos = 0; pos < courseCount; pos++)

 if (courses[pos].equals (course))

 {

 courseIndex = pos;

 break;

 }

 if (courseIndex != -1)

 {

 for (int pos = courseIndex; pos < courseCount - 1; pos++)

 courses[pos] = courses[pos + 1];

 courses[courseCount - 1] = null;

ID1018 Programming I Exam: solution by Fadil Galjic 16 Jan 2017

3

 courseCount--;

 }

}

c) (3 points)

Task 4 (4 points + 2 points + 3 points)

a) (4 points)

public int sizeCompare (Rectangle rec)

{

 int compResult = 0;

 if (this.width * this.height < rec.width * rec.height)

 compResult = -1;

 else if (this.width * this.height > rec.width * rec.height)

 compResult = 1;

 return compResult;

}

public int sizeCompare (CharSequence seq)

{

 int compResult = 0;

 if (this.charCount < seq.charCount)

 compResult = -1;

 else if (this.charCount > seq.charCount)

 compResult = 1;

 return compResult;

}

b) (2 points)

Rectangle rec1 = new Rectangle (4, 3);

list

 3

courses

10

20

50

courses[0]

courses[1]

courses[2]

courses[3]

courses[4]

Algebra

Algorithms

Programming

name

name

name

ID1018 Programming I Exam: solution by Fadil Galjic 16 Jan 2017

4

Rectangle rec2 = new Rectangle (6, 5);

Rectangle rec = Selector.oneOfTwo (rec1, rec2);

c) (3 points)

1+2=3

Task 5 (4 points + 5 points)

a) (4 points)

To determine the element that should be in the first position, n – 1 element comparisons are performed. To determine the

element in the second position, n – 2 comparisons are required. The number of comparisons is reduced by one for each

position. The total number of comparisons is:

(n – 1) + (n – 2) + … + 1 = n(n – 1) /2

The corresponding complexity function is:

t(n) = n(n – 1) /2

t(n) = n2/2 – n/2

For large n the term n2 dominates. Therefore:

t(n) ϵ θ(n2)

The algorithm is quadratic in terms of element comparisons.

You put n – 1 elements in the correct place, and thereby all elements are sorted. When an element is put in the correct place,

it swaps positions with the element already there. If an element is already in the correct position, it does not need to swap

positions with any other element. This means that in the worst case, there are n – 1 element exchanges.

The worst case time complexity of the algorithm, in terms of the number of element exchanges, can be given by the

following complexity function:

w(n) = n – 1

w(n) ϵ Θ(n)

The algorithm is linear in terms of element exchanges, in the worst case.

c) (5 points)

public static void sort (String[] elements)

{

 int lastPos = elements.length - 1;

 int minPos = 0;

 String e = "";

 for (int pos = 0; pos < lastPos; pos++)

 {

 minPos = pos;

 for (int p = pos + 1; p <= lastPos; p++)

 if (elements[p].compareTo (elements[minPos]) < 0)

 minPos = p;

 if (minPos != pos)

 {

 e = elements[pos];

 elements[pos] = elements[minPos];

 elements[minPos] = e;

 }

 }

}

