

Seminar 6

See www.kth.se/social/course/SF1626 for information about how the seminars work and what you are expected to do before and during the seminars.

This seminar will start with a quiz on a variant of one of the recommended exercises from the text book Calculus by Adams and Essex (8th edition) which are marked by boldface in the following list:

Section	Recommended exercises
16.1	$3,7,11$
16.2	$9,15,17$
16.3	$\mathbf{3 , 5 , 9}$
16.4	$\mathbf{5 , 1 1 , 1 5}$
16.5	$1, \mathbf{3}, 5$

In the seminar the following problems will be discussed.

Problems

Problem 1. Let \mathbf{F} be the vector field given by

$$
\mathbf{F}(x, y, z)=\left(x^{2}-y z, y^{2}-x z, z^{2}-x y\right) .
$$

for all (x, y, z) in \mathbb{R}^{3}.
(a) Determine $\operatorname{rot} \mathbf{F}=\nabla \times \mathbf{F}$ and $\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}$.
(b) Determine whether there is a potential, i.e., a function g such that $\mathbf{F}=\operatorname{grad} g$.
(c) Compute the flux of \mathbf{F} out from the sphere given by

$$
(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2} .
$$

Problem 2. Let $\mathbf{F}=\operatorname{rot} \mathbf{G}=\nabla \times \mathbf{G}$ where

$$
\mathbf{G}(x, y, z)=\left(z^{2}-y^{2}, x^{2}-z^{2}, y^{2}-x^{2}\right)
$$

(a) Compute the flux of \mathbf{F} through the triangle with verices in $(1,0,0),(0,1,0)$ and $(0,0,1)$. (The normal direction is chosen so that it points away from the origin.)
(b) Use Stoke'e Theorem in order to relate the flux from part (a) to a line integral and compute this line integral by means of a parametrization.

