
DD2434 Machine Learning, Advanced Course

Assignment 1

Carl Henrik Ek (adapted by Pawel Herman)

Deadline 12:00 (noon) November 29th, 2016

You will present the assignment by a written report that you can mail to me at paherman@kth.se
before the deadline. Please include ”[mladv16]” in the subject line. From the report it should be
clear what you have done and you need to support your claims with results. You are supposed
to write down the answers to the specific questions detailed for each task. This report should
clearly show how you have drawn the conclusions and come up with the derivations. Your
assumptions, if any, should be stated clearly. For the practical part of the task you are not
expected to include your code in the report but rather demonstrate and focus on the results of
your experiments, i.e. show images and graphs together with your analysis.

Being able to communicate your results and conclusions is a key aspect of any scientific prac-
titioner. It is up to you as a author to make sure that the report clearly shows what you have
done. Based on this, and only this, we will decide if you pass the task. No detective work should
be needed on our side. Therefore, neat and tidy reports please!

As far as the implementation is concerned, please use any programming/scripting language/envi-
ronment that you feel comfortable with. I can just recommend Python with its suitable libraries
and all the clues regarding the implementation are given here with Python in mind.

The grading of the assignments will be as follows,

E Completed Task 2.1 and 2.2.

D E + Completed Task 2.3.

C D + Completed Task 2.4.

B C + Completed Task 2.5.

A B + Completed Task 2.6.

1

mailto:paherman@kth.se

Abstract

In this assignment we will examine several different aspects of building models of data. In the
first task we will look at a supervised scenario where we work with a model of a specific relationship
between two different domains. This is a very common problem where we have observations in one
domain, say an image of a face and then wish to infer the identity of the person. The second task
we look at how we can perform unsupervised learning and learn a new representation of the data.
This is related to finding hidden structures or patterns in the data which might contain important
information. Finally we will end with a look at how we can approach model selection. This is
very important as it gives us the tool to design different models and then choose the one that best
represents our data. The important message that these exercises tries to convey is how we can
integrate our beliefs with observations using a set of simple rules. The assignments are aimed at
showing the key aspects of data modeling in a simple scenario such that our insights about the
models are not ”clouded” by the complexity data. It is left to you as a student to extend this
knowledge to a realistic scenario with real data.

Remark Please bear in mind that the notation here is a bit different from what you are used to in
the lectures. In short:

• vectors are marked as x instead of x

• vector y corresponds in most places to t (we observe noisy t that describe unknown y=f(x))

• X and Y describe matrices of data D (vectors of inputs xi and outputs ti, respectively, stack
together)

• matrix W describes parameters (not w) since we allow a general case of multidimensional
outputs (y not y)

• in the multidimensional case there is a concept of a generalization of the multivariate normal
distribution to matrix-valued random variables, referred to as matrix normal distribution, which
exploits vectorisation. However, here it can also be thought of as q conditionally independent
regression problems. Alternatively, for some derivations you can concentrate on N individual
samples that are conditionally independent (generalization from a sample point to a dataset).

I The Prior p(X), p(W), p(f)

2.1 Theory

Regression is the task of estimating a continuous target variable Y from an observed variate X. The
target and the observed variates are related to each other through a mapping,

f : X→ Y, (1)

where f indicates the mapping. Given input output pairs {xi,yi}N1 our task is to estimate the mapping
f such that we can infer the associated yi from previously unseen xi. In this task we will work with
real vectorial data such that xi ∈ X where xi ∈ Rq and yi ∈ Y where yi ∈ RD. Being probabilistic
means that we need to consider the uncertainty in both the observations as well as the relationship
between the variates. Starting with the relationship between two single points xji and yji we can
assume the following form of the likelihood,

p(yi|f,xi) ∼ N (f(xi), σ
2I). (2)

Page 2

Question 1: Why Gaussian form of the likelihood is a sensible choice? What does it mean that
we have chosen a spherical covariance matrix for the likelihood?

Assuming that each output point is independent given the input and the mapping we can write
the likelihood of the data as follows,

p(Y|f,X) =

N∏
i

p(yi|f,xi). (3)

Question 2: If we do not assume that the data points are independent how would the likelihood
look then? Remember that Y = [y1, . . . ,yN]

The task of regression means that we wish to infer yi from its corresponding variate xi. These
two variates are related to each other by the mapping f so from a probabilistic view point we wish
to find the mapping from the observed data. More specifically, taking uncertainty into account, what
we wish to reach is the posterior distribution over the mapping given the observations,

p(f |X,Y). (4)

2.1.1 Linear Regression

Please read carefully Chapter 3 in (Bishop 2006) before you start this part of the task. In order to
proceed lets make an assumption about the mapping and model the relationship between the variates
as a linear mapping. Further, let’s make an assumption about the structure of the noise in the
observations, assuming that they have been corrupted by additive Gaussian noise (i = 1, .., N),

yi = Wxi + ε, (5)

where ε ∼ N (0, σ2I). From this we can formulate the likelihood of the data,

p(Y|X,W) = (6)

Question 3: What is the specific form of the likelihood above, complete the right-hand side of
the expression.

The inference task we are interested in here is to learn the mapping, i.e. to infer W from the data,

p(W|X,Y) =
1

Z
p(Y|X,W)p(W). (7)

In the above equation we can see that we need to formulate our belief of the model parameters W in
a prior p(W). We can make many different choices of priors, but a sensible choice would be to pick
the conjugate prior i.e. a Gaussian prior over the parameters,

p(W) = N (W0, τ
2I). (8)

Question 4: Explain the concept of conjugate distributions. Why is this a motivated choice?

The prior distribution provides us with a tool that tells us how likely or “how far” a parameter is
from our belief.

Page 3

Question 5: The prior in Eq.8 is a spherical Gaussian. This means that the “preference” is
encoded in terms of a L2 distance in the space of the parameters. With this view, how would the
preference change if the preference was rather encoded using a L1 norm? Compare and discuss
the different type of solutions these two priors would encode.

The posterior is the object that integrates our prior beliefs with the data. In the next section we will
see how this works in practice for the linear regression model derived above.

Question 6: Derive the posterior over the parameters. Please, do these calculations by hand
as it is very good practice. However, in order to pass the assignment you only need to outline
the calculation and highlight the important steps. For simplicity, please make derivations for a
single output variable y. Otherwise, you would have to apply vectorization techniques.

• Why does it have the form that it does?

• What is the effect of the constant Z, are we interested in this?

2.1.2 Non-parametric Regression

In the previous task we made the assumption that the relationship between the two variates was linear.
This is quite a strong assumption that severely restricts the representative power of our model. The
obvious way to proceed would be to add more parameters to f and use a higher-degree polynomial,
but which one should we pick, degree 3 or 4, should we add a trigonometric function? These are
tricky questions that require a lot of knowledge about the specific data that we are looking at. We
want to stay general however, and the whole idea about Machine Learning is that we want the data
to tell us all that without any need for us to specify it before we start building our model (beyond
what prior can account for).

Let’s take a step back and think how a Bayesian would think in this situation. The above argument
just says that we have a large uncertainty in, not only in the the parameters of the mapping, but
also in the actual form of the mapping. Bayesian reasoning allows us to deal with this, it is actually
exactly this scenario that it was designed to deal with. We just need to formulate our uncertainty
about the mapping in a prior over mappings and then use Bayes rule to reach the posterior. The
problem is just that we need to somehow formulate a prior over a space of functions, which is quite a
lot stranger mathematical object compared to the scalar valued parameters W in the previous task.
Before proceeding with this task please read (Bishop 2006, p. 303-311).

We know from the lecture that Gaussian Processes (GPs) can be used to represent prior distribu-
tions over the space of functions. Rather than specifying a specific parametric form of the function
GPs is a non-parametric model.

Question 7: What is a non-parametric model and what is the difference between non-parametrics
and parametrics? In specific discuss these two aspects of non-parametrics,

• Representability?

• Interpretability?

We will now proceed to look at the regression problem where we replace the linear assumption in the
mapping to use a non-parametric prior over the space of functions. Let’s make the same assumption
about the observations as we did in the linear case,

yi = f(xi) + ε. (9)

This allows us to formulate the likelihood in the same manner as before. However, in the linear
example we could easily formulate the relationship between x, y and f as the latter had a simple

Page 4

parametric form. Now we cannot do this anymore. To proceed, lets define the output of the function
f as its own random variable,

yi = fi + ε, (10)

where fi is the output of the function at input location xi. The next step is to formulate the prior
over the output of the function. This we can do using a GP,

p(f |X,θ) = N (0, k(X,X)) (11)

where k(·, ·) is the covariance function and θ is its parameters. We will refer to θ as the hyper-
parameters of the process. In this we have assumed that the data have been translated such as to
have zero-mean such that we do not need to have a mean function in the prior.

Question 8: Explain what this prior does? Why is it a sensible choice? Use images to show
your reasoning. Clue: use the marginal distribution to explain the prior

Given this formulation we can now formulate the full model.

Question 9: Formulate the joint likelihood of the full model that you have defined above,

p(Y,X, f,θ)

(Try to draw a very simple graphical model to clearly show the assumptions that you have made.)

Unfortunately, we have added to our model a new variable that we are not really interested in.
Specifically we have modeled the relationship between Y and f and also f and X but we really are
interested in the relationship between Y and X. The motivation behind this is that we now have the
possibility to have uncertainty in each of these stages, in our beliefs of the functions, and in how we
believe the output of the function have generated the observed data. But again, we are not interested
in f and therefore the variable should be marginalised out. Performing the marginalisation implies
calculating the following integral,

p(Y|X,θ) =

∫
p(Y|f)p(f |X,θ)df. (12)

Question 10: Explain the marginalisation in Eq.12,

• Explain how this connects the prior and the data?

• How does the uncertainty “filter” through this?

• What does it imply that θ is left on the left-hand side of the expression after marginalisa-
tion?

Page 5

2.2 Practical

Now we will implement the approach we studied in the previous part. Remember to save images and
figures to support your claims in part 1 as this will make the presentation much easier to examine.
There are a couple of packages in Python that are really useful:

1 import pylab as pb

2 import numpy as np

3 from math import pi

4 from scipy.spatial.distance import cdist

5

6 # To sample from a multivariate Gaussian

7 f = np.random.multivariate_normal(mu ,K);

8 # To compute a distance matrix between two sets of vectors

9 D = cdist(x1 ,x2)

10 # To compute the exponetial of all elements in a matrix

11 E = np.exp(D)

2.2.1 Linear Regression

In this task we will implement the linear regression that we looked at in the previous task. We will
examine both the prior and the posterior over the parameters W and evaluate the effect this will have
on the model. To do so we will need to have some data to experiment with. What we want to show
is that the methodology that we have learned is capable of recovering the true underlying mapping
from the observed data. Therefore let’s generate some data and then simply throw the generating
parameters away.

yi = w0xi + w1 + ε (13)

x = [−1,−0.99, . . . , 0.99, 1] (14)

ε ∼ N (0, 0.3) (15)

W = [−1.3, 0.5] (16)

Question 11:

1. Visualise the prior distribution over W.

2. Pick a single data-point from the data and visualise the posterior distribution over W.

3. Sample from the posterior and show a couple of functions.

4. Repeat 2− 3 by adding additional data points.

Describe the plots and the behavior when adding more data? Is this a desirable behavior?

Page 6

2.2.2 Non-parametric Regression

In this task we will implement and evaluate the effect of a GP-prior. Specifically we will look at the
squared exponential covariance function,

k(xi,xj) = σ2fe
−

(xi−xj)
T(xi−xj)

l2 (17)

You will need to first formulate the prior distribution and then the posterior. How to do this can be
found in (Bishop 2006, p. 306-308). First we will look at the prior.

Question 12:

1. Create a GP-prior with a squared exponential co-variance function.

2. Sample from this prior and visualise the samples.

3. Show samples using different length-scale for the squared exponential.

Explain the behavior of altering the length-scale of the covariance function.

This has been said many times before but it is something that cannot be stressed enough, priors
are very important as they allow us to formulate our uncertainty in our beliefs in a principled manner.
However, more important is that we can combine our beliefs with observations, this is what facilitates
learning. The object that contains this is the posterior distribution. We will now perform a simple
experiment on the posterior. The posterior and the prior are the same object if we do not have any
observed data.

Question 13: Explain the above statement, why is this?

Lets generate some data that we know would not work particularly well using a linear model as in
the previous task,

yi = sin(xi) + εi (18)

x = [−π, . . . , π]T (19)

εi ∼ N (0, 0.5), (20)

where the cardinality of x is 7, i.e. we have 7 data points. Now we have some observations of a
noisy sinewave which we can use together with our prior to see the posterior distribution over the
functions.

Question 14:

1. Compute the predictive posterior distribution of the model

2. Sample from this posterior with points both close to the data and far away from the observed
data.

3. Plot the data, the predictive mean and the predictive variance of the posterior from the
data

Explain the behavior of the samples and compare the samples of the posterior with the ones from
the prior. Is this behavior desirable? What would happen if you would add a diagonal covariance
matrix to the squared exponential?

Page 7

II The Posterior p(X|Y)

In the previous task we looked at learning a relationship between two variates X and Y such that
we could infer one from the other. One way of thinking about this is that given the mapping f and
the input X we specify the outputs Y, you can think of X as a “representation” of Y, i.e. that the
former have generated the later. Actually this is exactly what we did in the linear regression task, we
generated some data using a set of parameters w then we threw them away and later recovered them
back, but we retained x in this process. In this task we will make things a bit more complicated by
looking at representation learning. This means we will only observe the outputs Y and want to learn
input X that can represent Y. Why would we ever want to do this? Lets take the example of an image.
Images are very high-dimensional objects, a typical HD image yi concatenated into a vector will live
in a space of R1920×1080×3. However, does the image actually have that many degrees-of-freedom? To
simplify, given that you know the place the image was taken, the weather, the exact camera angle,
the objects in the image wouldn’t you be able to generate the pixel data? This is of course a massive
simplification but ponder how many parameters you can come up with and this will be less than the
number of pixels in the image. Let’s call all these factors that we came up with and refer to them
as generating parameters just as we said that X through f generated Y in Task I. Representation
learning allows you to recover these generating parameters directly from the data. More specifically
this relates to building a model of the data Y and then looking at the posterior distribution over the
input to the model X.

The other new thing that we will introduce in this task is learning. This means that we specify
a model like in Task I and then fit this model to the data. It implies that the model has a set of
parameters, which we now will infer from the data.

2.3 Theory

The focus here will be on the same linear models as in the first part (though non-parametric Gaussian
Processes in Part I can also be handled in the similar framework). The main difference is that the
input locations X are not known a priori but rather we want to infer them from data. We will refer to
the input locations as the latent representation of the observed data Y. Think about how this relates
to the latent space models that you worked on in the first part of the course, where you used discrete
latent states to represent continuous data. This is very much the same thing, except for that we want
to find the latent space from data and that rather than being a discrete variable it is continuous.

Lets start with the linear model,

p(Y,X,W) = p(Y|X,W)p(X)p(W). (21)

The next step will take a bit of thinking, being fully Bayesian we would like to invert the model above
and look at the conditional distribution over the variables that we want to infer. Think about this,
does it make sense? Actually, there is a simple relationship between X and W: having one implies
having the other one. As an example, if each xi is multipled by a constant, it is the same as dividing
the W by the same constant. To get away from this is we should only look at a single variable. But
as our model contains both X and W, how can we do this? In the Bayesian spirit, we can specify a
prior over the variable that we are not interested in and marginalise it out from the model.

What does this actually mean, previously we have been using prior distributions as a mean of
encoding our beliefs about a variable before seeing data. Another equally valid explanation is as
encoding our preference of a variable.

Question 15: Elaborate on this, why can one view a prior as encoding a preference?

Let’s specify the prior over the latent variables as a spherical gaussian,

p(X) = N (0, I). (22)

Page 8

Question 16: What type of “preference” does this prior encode?

Now we can combine this prior with the likelihood, integrate out X and reach the marginal distribu-
tion,

p(Y|W) =

∫
p(Y|X,W)p(X)dX. (23)

Question 17: Perform the marginalisation in Eq. 23 and write down the expression. As pre-
viously, it is recommended that you do this by hand even though you only need to outline the
calculations and show the approach that you would take to pass the assignment.

2.3.1 Learning

So far we have only created models and looked at the posterior. Now we will take one step further
and learn the parameters of the model. A good background to what we will go through here can be
found in (Bishop 2006, p. 9,23,26,30,165, sec. 1.2.4-1.2.6). Let’s start to do learning in a probabilistic
model with the maximum-likelihood (ML) approach. So, we formulate the likelihood of the data and
find the parameters that maximise it,

Ŵ =argmaxWp(Y|X,W). (24)

The next level is to perform maximum-a-posteriori (MAP) estimation. This means that we find the
parameters that maximise the posterior distribution,

Ŵ =argmaxW

p(Y|X,W)p(W)∫
p(Y|X,W)p(W)dW

= argmaxWp(Y|X,W)p(W). (25)

There is also an in-between stage which is often referred to as Type-II Maximum-Likelihood which
implies maximisation of the marginal likelihood where you integrate out one parameter and then
maximise over another,

Ŵ =argmaxW

∫
p(Y|X,W)p(X)dX. (26)

Question 18: Compare these three estimation procedures above in log-space.

• How are they different?

• How are MAP and ML different when we observe more data?

• Why are the two last expressions of Eq. 25 equal?

In the representation task we have a model with two variables W and X that interact. This means
that a Type-II ML estimation is a sensible approach to learn the model.

Page 9

Practical Optimisation In practice when performing optimisation on probabilistic models we often
have to deal with exponentials. Exponentials are nice in many ways, they are for example infinitely
differentiable, but they are a bit tricky to play with. Often we have the case that our parameters
are actually in the exponents and then we can do a neat trick that makes life much easier. Rather
than working directly on the exponent we perform all our learning in the log-space instead. The
reason that we can do that is because log(·) is a monotonic function and therefore it will not alter
the location of the extremes of the function. Further, most optimisation packages are designed to
minimise a function rather than maximising it. This means that in practice we often formulate our
optimisation problem as a minimisation of the negative log of a probablitiy,

θ̂ = argmaxθp(Y|θ) = argminθ − log (p(Y|θ)) . (27)

Now we will write down the objective function and its gradients which means we need to do some
matrix algebra. There are plenty of literature resources helpful when working with matrices. The
following two references, [URL] (Petersen and Pedersen 2006) and [URL] (Magnus and Neudecker
1988), are particularly worth recommending.

Question 19:

1. Write down the objective function −log(p(Y|W)) = L(W).

2. Write down the gradients of the objective with respect to the parameters δL
δW

In the practical section of this task you will perform the optimisation above for a real dataset.

2.4 Practical

This practical part includes what is considered the bread and butter for a machine learning scientist,
i.e. working with data. Let’s generate some data so that we know what we are looking to recover,

Y = flin(fnon-lin(x)) (28)

x = [0, . . . , 4π] (29)

|x| = 100 (30)

fnon-lin(xi) = [xisin(xi), xicos(xi)] (31)

flin(x′) = ATx′ (32)

A = R10×2 (33)

Aij ∼ N (0, 1). (34)

The values in the linear mapping are drawn from an independent Gaussian as we do not really care
about the specific form of the mapping we only care about its rank.

Now we have generated a dataset Y ∈ R100×10 which has been generated from a one-dimensional
generating parameter x ∈ R1×N . The aim is now to recover x, i.e a single line, given only Y. This is
a very general and incredibly important task in machine learning, i.e. how to discover the parameters
that have generated some observations. It appears in many applications such as computer vision and
computational biology just to name a few. It is important as many types of data are represented in
high-dimensional spaces, which are very hard to interpret, providing the true generating parameters
allows us to analyse the data and hopefully find the casual behavior in the data.

Page 10

http://www.eattardo.com/wp-content/uploads/2013/10/MatrixCookbook2012.pdf
http://www.janmagnus.nl/misc/mdc2007-3rdedition

2.4.1 Linear Representation Learning

We have an objective function and we have the gradients with respect to the parameters that we
want to learn. The actual optimisation can be done with the use of gradient descent. This is well
implemented in scipy.optimise. Have a look at URL for the different methods that are available.
Below is the simple structure that you need to implement in order to get the fmin function working,

1 import numpy as np

2 import scipy as sp

3 import scipy.optimize as opt

4

5 def f(x, *args):

6 # return the value of the objective at x

7 return val

8

9 def dfx(x,*args):

10 # return the gradient of the objective at x

11 return val

12

13 x_star = opt.fmin_cg(f,x0,fprime=dfx , args=args)

Question 20: Plot the representation that you have learned. Explain why it looks the way it
does. Was this the result that you expected? Hint: Plot X as a two-dimensional representation.

Page 11

http://docs.scipy.org/doc/scipy-0.14.0/reference/optimize.html

Figure 1: The above figure (Figure 3.13 in (Bishop 2006) shows the idea of model complexity and
Occam’s razor that was introduced in (Mackay 1991). Occam’s Razor tells us that we should always
choose the “simplest” model that explains all of our data. In the figure the data domain is ordered on
the x-axis by increasing complexity and the evidence p(D) is shown on the y-axis. Given that we
want to model the data D0 which model should we choose? Model M1 places no probability mass over
D0 so it is a bad choice. Both model M2 and M3 places probability mass over D0 but as M2 places
more, due to it being less complex only modeling a part of the data domain, and should therefore be
preferred according to Occam’s Razor.

III The Evidence p(Y)

One of the main arguments behind Bayesian reasoning is that it automatically implements Occam’s
razor, i.e. that automatically chooses the “correct” model complexity to perform a specific task. In
this part of the assignment we will perform a study which shows that sometimes things are not as
obvious as one might think. We will use the evidence of the data under the model as a means of
measuring the complexity of the model.

2.5 Theory

In the practical part of the task we will perform the experiments outlined in (Murray 2005). It
is recommended that you read this paper and familiarise yourself with their discussion surrounding
complexity. Do not expect any clear answers in this but you should grasp the discussion and be able
to argue about what the results shows.

2.5.1 Data

Consider a very simple data domain D = {yi}9i=1 where yi ∈ {−1, 1}. This data is structured according
to a grid whos locations can be parametrised by X = {xi}9i=1 where xi = ({−1, 0,+1}, {−1, 0,+1}).
This means that our data domain D contains 29 = 512 different elements which is small enough for
us to reason about but still complicated enough that it requires a sensible model.

2.5.2 Models

Given the data defined above we wish to create a model, i.e. something that will explain the statistical
variations that are possible in D. The simplest model is something that simply takes all its probability
mass and places it uniformly over the whole data space,

p(D|M0,θ0) =
1

512
. (35)

Page 12

Question 21: Why is this the simplest model, and what does it actually imply? Discuss its
implications, why is this a bad model and why is it a good model?

The first model Eq. 35 does not take any parameters at all which means it has no flexibility and
uses no information about D except for its cardinality. We can use what we know about the data in
order to specify something slightly more representative. If we assume that all yn are independent we
can factorise the model into 9 separate models,

p(D|M1,θ1) =
9∏

n=1

p(yn|M1,θ1), (36)

where θji means the j:th element of the parameter vector for the i:th model. Each model can be
expressed using an exponential function which relates the vaule yi to its location xi,

p(D|M1,θ1) =
9∏

n=1

1

1 + e−y
nθ11x

n
1

, (37)

Question 22: Explain how each separate model works. In what way is this model more or less
flexible compared to M0? How does this model spread its probability mass over D?

We can continue to add more parameters and create further models,

p(D|M2,θ2) =
9∏

n=1

1

1 + e−y
n(θ12x

n
1+θ

2
2x

n
2)

(38)

p(D|M3,θ3) =
9∏

n=1

1

1 + e−y
n(θ13x

n
1+θ

2
3x

n
2+θ

3
3)
, (39)

Question 23: How have the choices we made above restricted the distribution of the model?
What datasets are each model suited to model? What does this actually imply in terms of
uncertainty? In what way are the different models more flexible and in what way are they more
restrictive? Discuss and compare the models to each other.

2.5.3 Evidence

The evidence of a model Mi is the distribution p(D|Mi). This distribution tells us how and where
the model spreads its probability mass. Occam’s razor can be interpreted in terms of the evidence
such as we should choose a model which places most of its mass where we will see data and as little
as possible elsewhere. In the previous section we have defined a small simple data domain D and we
will now evaluate where the different models defined above places their probability mass.

In order to “reach” the evidence of a model we need to first remove the dependency of the variable
θ. This can be done by marginalising out the parameters from the model,

p(D|Mi) =

∫
∀θ
p(D|Mi,θ)p(θ)dθ. (40)

Question 24: Explain the process of marginalisation. Discuss its implications.

Page 13

The marginalisation above requires one more object that we have not seen before p(θ|Mi). This is the
prior over the parameters of the model. Being Bayesian implies that you need to take uncertainty into
account in all steps of your calculations. This is true for the data but also true for the parameters.
As we do not really know much at all about the parameters we would like to be very uncertain and
allow for a large range of possible values of θ. One prior would be to choose a simple Gaussian with
zero mean and a very large variance,

p(θ|Mi) = N (µ,Σ) (41)

µ = 0

Σ = σ2I

σ2 = 103

Question 25: What does this choice of prior imply? How does the choice of the parameters of
the prior µ and Σ effect the model?

Now when we have defined the prior p(θ) we just need to perform the marginalisation in Eq. 40
to be able to evaluate the evidence. However, this integration is rather tricky to do analytically which
means that we will here use an approximate integral using a näıve Monte Carlo approach,

p(D|Mi) ≈
1

S

S∑
s=1

p(D|Mi,θ
s), (42)

θs ∼ p(θ|Mi) (43)

where s indexes the samples from the prior of the parameters.
We will now proceed to implement the procedure explained above and see what implications the

different models and the choices of prior distributions have in terms of the evidence.

Page 14

2.6 Practical

Even though the functionality that we need to do the calculations described above are simple there
is, as always with high-level languages, lots of useful packages available in Python that will make our
life much easier. You may find the following libraries very useful,

1 import itertools as it

2 from math import exp , sqrt , pi

3 import scipy.stats

Below is just a suggestion of how and in what order to implement the code to be able to answer
the questions for this task. For grading your results reflected in plots matter, not the implementation
itself.

1. First create the code that generates the dataset D and the locations of the data x,
itertools will be very useful here. Write some simple functionality to visualise a sin-
gle element of the data on the 3× 3 grid defined by x.

2. Create the code to represent each model M0 to M3.
3. Create the code to sample from the prior p(θ|Mi).
4. Write the code to perform the Monte Carlo integration given a model, returning the

evidence.
5. Write the code to index the data-sets such that you can easily compare the models. A

good suggestion is the one provided in the appendix of the paper.

Question 26: For each model sum the evidence for the whole of D, what numbers do you get?
Explain these numbers for all the models and relate them to each other.

Question 27: Plot the evidence over the whole dataset for each model. The x-axis index the
different instances in D and each models evidence is on the y-axis. How do you interpret this?
Relate this to the parametrisation of each model.

Question 28: Find using np.argmax and np.argmin which part of the D that is given most
and least probability mass by each model. Plot the data-sets which are given the highest and
lowest evidence for each model. Discuss these results, does it make sense?

Question 29: What is the effect of the prior p(θ).

• What happens if we change its parameters?

• What happens if we use a non-diagonal covariance matrix for the prior?

• Alter the prior to have a non-zero mean, such that µ = [5, 5]T?

• Redo evidence plot for these and explain the changes compared to using zero-mean.

Good Luck!

Page 15

III References

[1] C.M. Bishop. Pattern recognition and machine learning. 2006

[2] K.P. Murphy. Machine Learning: A Probabilistic Perspective The MIT Press, 2012.

[3] K.B. Petersen and M.S. Pedersen. (2006) The matrix cookbook. Technical report. Technical
University of Denmark. https://www.ics.uci.edu/~welling/teaching/KernelsICS273B/

MatrixCookBook.pdf

[4] J.R. Magnus et al. Matrix differential calculus with applications in statistics and econometrics.
Wiley, 1998.

[5] J. Hensman et al. (2014) GPy: A Gaussian process framework in Python. https://github.

com/SheffieldML/GPy

[6] D.J.C. Mackay. (1991) Bayesian methods for adaptive models. PhD thesis. California Institute
of Technology. http://thess.library.caltech.edu/25/

[7] I. Murray and Z. Ghahramani. (2005) A note on evidence and Bayesian Occam’s razor. Tech-
nical report. http://homepages.inf.ed.ac.uk/imurray2/pub/05occam/occam.pdf

Page 16

https://www.ics.uci.edu/~welling/teaching/KernelsICS273B/MatrixCookBook.pdf
https://www.ics.uci.edu/~welling/teaching/KernelsICS273B/MatrixCookBook.pdf
https://github.com/SheffieldML/GPy
https://github.com/SheffieldML/GPy
http:// thess.library.caltech.edu/25/
http://homepages.inf.ed.ac.uk/imurray2/pub/05occam/occam.pdf

	The Prior p(X), p(W), p(f)
	Theory
	Linear Regression
	Non-parametric Regression

	Practical
	Linear Regression
	Non-parametric Regression

	The Posterior p(X|Y)
	Theory
	Learning

	Practical
	Linear Representation Learning

	The Evidence p(Y)
	Theory
	Data
	Models
	Evidence

	Practical

	References

