
JVM Language and Compiler Design for Interactive
Graphics

Nick Anderson
DGI 2016

November 3, 2016

1 Introduction
For Java, Scala, and other JVM-language programmers, programming for graphics proves far
too difficult. One must learn the less intuitive JVM graphics libraries, interacting with drawing
panels and frames, overriding classes to give simple functionality. For simple applications for Java
beginners, the standard graphics libraries are simply out of reach without copious copying and
pasting. Rather than approach graphics from a viewer’s perspective, there is meta user research
to be conducted about how others should be able to create graphics. Using a common tool of
developers, a compiler, one may simplify interaction patterns with a new syntax that will also
run on the JVM. A new language could be designed and implemented with a working compiler to
better serve developers, especially those lacking experience.

2 Improving Standard Java Graphics

2.1 Current Java Libraries
As the most popular JVM language, Java has a Graphics API consisting of Frames and Canvases.
The interface that a Java Graphics developer must work with has far too much depth for a beginner
or any user merely trying to get a simple application running.

2.1.1 Canvas

Drawing takes place on a JPanel, which can then listen through the KeyListener interface. Several
methods need to be understood and overrode to provide even the simplest interface. Rather than
any simple import, developers must extends and implement a class rather than merely work with
one. Many defaults must be set manually that new developers may expect. The canvas also lays
upon a frame, which also must be created and demonstrates more barriers to building graphics
applications quickly.

c l a s s SlaphicsCanvas extends JPanel implements KeyListener {

Graphics2D g2d ;
Color pa intColor ;
SlaphicsFrame frame ;

pub l i c SlaphicsCanvas () {
super () ;
t h i s . s e tFocusab l e (t rue) ;
t h i s . addKeyListener (t h i s) ;

}

pub l i c void setFrame (SlaphicsFrame frame) {
t h i s . frame = frame ;

}

1

pub l i c void paintComponent (Graphics g) {
super . paintComponent (g) ;
t h i s . g2d = (Graphics2D) g ;

}

@Override
pub l i c void keyTyped (KeyEvent e) {

}

@Override
pub l i c void keyPressed (KeyEvent e) {}

@Override
pub l i c void keyReleased (KeyEvent e) {}

}

2.1.2 Frame

Creating the frame for graphics presents a separation between canvas and frame, where many
beginners would likely combine the two into a single drawing panel. Again, defaults such as the
window closing behavior are set manually here, which would be expected by new developers.

c l a s s SlaphicsFrame extends Frame {

pub l i c SlaphicsFrame () {
super () ;

}

pub l i c void add (SlaphicsCanvas c) {
super . add (c) ;
c . setFrame (t h i s) ;
super . s e tV i s i b l e (t rue) ;

}

pub l i c SlaphicsFrame i n i t (i n t width , i n t he ight) {
super . s e t S i z e (width , he ight) ;
super . addWindowListener (new WindowAdapter () {

pub l i c void windowClosing (WindowEvent windowEvent){
System . e x i t (0) ;

}
}) ;
r e turn t h i s ;

}
}

2.2 Novel JVM Language
With a new JVM-compiled language, novice developers writing for the JVM could benefit from
simpler interaction patterns. Implemented or extended classes should be kept to a minimum, only
used to clarify the context of the program as within a graphics context. Creating a frame should
be tightly coupled with the canvas, as in this example. The frame could merely have a set size and
allow drawing with a set number of built in rectangles, ovals, strings, and lines.

The current mock up shows examples of the default paint through slacPaint. The artist then
decides, on key press, to modify the original painted canvas with new lines, shapes, and new text.
The interaction pattern with text is also simplified through discrete keySequence and keyEvent
methods, where both are triggered in response to every key press, keyEvent receiving the last key,
while keySequence receives every key pressed thus far.

2

c l a s s MySlaphicsCanvas <: SlaphicsCanvas {
method s l a cPa in t () : Unit = {

s e l f . draw (new S l aph i c s S t r i n g (100 , 100 , "He l lo ! " , " b lack ")) ;
s e l f . draw (new S laph i c sL ine (25 , 350 , 350 , 25 , " orange ")) ;
s e l f . draw (new Slaph ic sRect (25 , 25 , 250 , 200 , "pink ")) ;
s e l f . draw (new SlaphicsOval (250 , 250 , 75 , 100 , " gray "))

}

method s lacPa intWithDi f fCo lo r s () : Unit = {
s e l f . draw (new S l aph i c s S t r i n g (100 , 100 , "He l lo in red ! " , " red ")) ;
s e l f . draw (new S laph i c sL ine (25 , 350 , 350 , 25 , "pink ")) ;
s e l f . draw (new Slaph ic sRect (25 , 25 , 250 , 200 , " black ")) ;
s e l f . draw (new SlaphicsOval (250 , 250 , 75 , 100 , " blue "))

}

method keySequence (keyPressed : S t r ing) : Unit = {
s e l f . draw (new S l aph i c s S t r i n g (150 , 150 , "Pressed : " + keyPressed , " black ")) ;
s e l f . s l a cPa intWithDi f fCo lo r s ()

}

method keyEvent (keyPressed : S t r ing) : Unit = {
s e l f . draw (new S l aph i c s S t r i n g (300 , 300 , "Pressed : " + keyPressed , " black ")) ;
s e l f . s l a cPa intWithDi f fCo lo r s ()

}
}

method main () : Unit = {
var frame : SlaphicsFrame ;
frame = new SlaphicsFrame () . i n i t (500 , 500) ;
frame . add (new MySlaphicsCanvas ())

}

3 Comparison to other Graphics API

3.1 PaperJS
From the PaperJS tutorial[Leh16], one defines the canvas on which to draw as the id of an HTML
component, then has a natural interaction pattern of creating graphics primitives and interacting
with them. Handlers can be set for key strokes and time events, using native javascript, naturally
embedded. PaperJS demonstrates a more ideal interaction pattern, where the drawing surface is
thrown anyway into the layout of a page, then primitives can be used more simply.

<!DOCTYPE html>
<html>
<head>
<!−− Load the Paper . j s l i b r a r y −−>
<s c r i p t type="text / j a v a s c r i p t " s r c=" j s /paper . j s "></s c r i p t >
<!−− Def ine i n l i n e d PaperScr ipt a s s o c i a t e i t with myCanvas −−>
<s c r i p t type="text / pape r s c r i p t " canvas="myCanvas">

// Create a Paper . j s Path to draw a l i n e in to i t :
var path = new Path () ;
// Give the s t r oke a c o l o r
path . s t rokeCo lo r = ’ black ’ ;
var s t a r t = new Point (100 , 100) ;
// Move to s t a r t and draw a l i n e from there
path .moveTo(s t a r t) ;
// Note the p lus operator on Point ob j e c t s .

3

// PaperScr ipt does that f o r us , and much more !
path . l ineTo (s t a r t + [100 , −50]) ;

</s c r i p t >
</head>
<body>

<canvas id="myCanvas" r e s i z e ></canvas>
</body>
</html>

4 Developer User Research

4.1 Developer Experience
The experience of a developer proves critical to his or her intuition regarding any API, where the
current Java pattern may only prove unnatural for those used to other languages or just more
natural, real world drawing experiences. Three distinct groups can quickly be identified: first, the
most trivial, experienced developer who may quickly learn even less intuitive APIs, second, the
inexperienced developer who has no intuitions regarding object-oriented programming or graphics
programming, and third, the developer experienced in another language’s graphics framework,
such as Javascript’s or Python’s. However, for all three, more natural interaction patterns with
a graphics library would best serve the beginner, feel familiar to the foreign developer, and prove
unobtrusive to the experienced developer. Developers of all three groups should be asked for input
on the implementation of a new JVM graphics library.

4.2 Feedback and Improvement
Developer feedback will inform improvements and changes to the new graphics API, as well as
greater language design insights.

References
[Leh16] Jürg Lehni. Working with paper.js, 2016.

4

