Crash course in MATLAB

© Tobin A. Driscoll.* All rights reserved.

June 27, 2005

The purpose of this document is to give a medium-length introduction to the essentials of MATLAB and how to use it well. I'm aiming for a document that's somewhere between a twopage introduction and the excellent all-inclusive books available. I use it in a week-long "camp" for graduate students at the University of Delaware in the summer after their first year of study.

No advance knowledge of MATLAB is necessary to read this document, but a working familiarity with basic linear algebra is expected, and general knowledge of programming is a big help. The first four sections cover the basics needed to solve even simple exercises. Section 5 is a bare-bones introduction to the big subject of graphics in MATLAB. The next three sections discuss matters than an intermediate MATLAB programmer ought to know. The remaining sections go into advanced issues in varying degrees of detail.

The version of MATLAB at this writing is 7.0.

1 Introduction

MATLAB is a software package for computation in engineering, science, and applied mathematics. It offers a powerful programming language, excellent graphics, and a wide range of expert knowledge. MATLAB is published by and a trademark of The MathWorks, Inc.

The focus in MATLAB is on computation, not mathematics: Symbolic expressions and manipulations are not possible (except through a clever interface to Maple). All results are not only numerical but inexact, thanks to the rounding errors inherent in computer arithmetic. The limitation to numerical computation can be seen as a drawback, but it is a source of strength too: MATLAB is much preferred to Maple, Mathematica, and the like when it comes to numerics.

On the other hand, compared to other numerically oriented languages like C++ and FORTRAN, MATLAB is much easier to use and comes with a huge standard library. ${ }^{1}$ The unfavorable comparison here is a gap in execution speed. This gap is not always as dramatic as popular lore has it, and it can often be narrowed or closed with good MATLAB programming (see section 6), but MATLAB is not a power tool for high-performance computing.

[^0]The MATLAB niche is numerical computation on workstations for non-experts in computation. This is a huge niche-one way to tell is to look at the number of MATLAB-related books on mathworks.com. Even for supercomputer users, MATLAB can be a valuable environment in which to explore and fine-tune algorithms before more laborious coding in another language.

1.1 The fifty-cent tour

When you start MATLAB, you get a multipaneled desktop. The layout and behavior of the desktop and its components are highly customizable. The component that is the heart of MATLAB is called the Command Window, located on the right by default. Here you can give MATLAB commands typed at the prompt, >>. Unlike FORTRAN and other compiled computer languages, MATLAB is an interpreted environment-you give a command, and MATLAB tries to execute it right away before asking for another.

At the top left you can see the Current Directory. In general MATLAB is aware only of files in the current directory (folder) and on its path, which can be customized. Commands for working with the directory and path include cd, what, addpath, and editpath (or you can choose "File/Set path..." from the menus). You can add files to a directory on the path and thereby add commands to MATLAB; we will return to this subject in section 3 .

Next to the Current Directory tab is the Workspace tab. The workspace shows you what variable names are currently defined and some information about their contents. (At start-up it is, naturally, empty.) This represents another break from compiled environments: variables created in the workspace persist for you to examine and modify, even after code execution stops.

Below the Command Window/Workspace window is the Command History window. As you enter commands, they are recorded here. This record persists across different MATLAB sessions, and commands or blocks of commands can be copied from here or saved to files.

As you explore MATLAB, you will soon encounter some toolboxes. These are individually packaged sets of capabilities that provide in-depth expertise on particular subject areas. There is no need to load them explicitly-once installed, they are available transparently. You may also encounter Simulink, which is a semi-independent graphical control-engineering package not covered in this document.

1.2 Graphical versus command-line usage

MATLAB is traditionally oriented towards responding to typed commands, either from the Command Line or from files (section 3). But in the last several revisions, MATLAB has increasingly made most of its power accessible from graphical interfaces-menus, buttons, and other widgets. These interfaces are especially useful to beginners, who benefit from the organization of myriad options. ${ }^{2}$ As a rule, graphical interfaces may be more natural for certain types of interactive work, such as annotating a graph, while commands are better for precise, repeated, and reproducible results.

[^1]In this document I usually refer to the names of commands to be entered. In most cases these have graphical interface equivalents, even if I don't explicitly point them out.

1.3 Help

MATLAB is huge. You can't learn everything about it, or even always remember things you have done before. It is essential that you become familiar with the online help.

There are two levels of help:

- If you need quick help on the syntax of a command, use help. For example, help plot shows right in the Commmand Window all the ways in which you can use the plot command. Typing help by itself gives you a list of categories that themselves yield lists of commands.
- Typing doc followed by a command name brings up more extensive help in a separate window. For example, doc plot is better formatted and more informative than help plot. In the left panel one sees a hierarchical, browsable display of all the online documentation. Typing doc alone or selecting Help from the menu brings up the window at a "root" page.

The Getting Started with MATLAB manual is a very good place to start. Depending on your installation, the documentation may be available in PDF form for printing and offline reading.

1.4 Basic commands and syntax

If you type in a valid expression and press Enter, MATLAB will immediately execute it and return the result, just like a calculator.

```
>> 2+2
ans =
    4
>> 4^2
ans =
    1 6
>> sin(pi/2)
ans =
    1
>> 1/0
Warning: Divide by zero.
ans =
```

```
    Inf
>> exp(i*pi)
ans =
    -1.0000 + 0.0000i
```

Notice some of the special expressions here: pi for π, Inf for ∞, and ifor $\sqrt{-1} .^{3}$ Another special value is NaN, which stands for not a number. $N a N$ is used to express an undefined value. For example,

```
>> Inf/Inf
ans =
    NaN
```

NaNs can be tricky. For example, two NaN values are unequal by definition.
You can assign values to variables with alphanumeric names.

```
>> x = sqrt(3)
x =
    1.7321
>> days_since_birth = floor(now) - datenum(1969,05,06)
days_since_birth =
    12810
>> 3*z
??? Undefined function or variable 'z'.
```

Observe that variables must have values before they can be used. When an expression returns a single result that is not assigned to a variable, this result is assigned to ans, which can then be used like any other variable.

```
>> atan(x)
ans =
    1.0472
>> pi/ans
ans =
    3
```

[^2]In floating-point arithmetic, you should not expect "equal" values to have a difference of exactly zero. The built-in number eps tells you the maximum error in arithmetic on your particular machine. ${ }^{4}$ For simple operations, the relative error should be close to this number. For instance,

```
>> eps
ans =
    2.2204e-16
>> exp(log(10)) - 10
ans =
    1.7764e-15
>> ans/10
ans =
    1.7764e-16
```

Here are a few other demonstration statements.

```
>> % Anything after a % sign is a comment.
>> x = rand(100,100); % ; means "don't print out result"
>> s = 'Hello world'; % single quotes enclose a string
>> t = 1 + 2 + 3 + ...
4 + 5 + 6 % ... continues a line
t =
    2 1
```

Once variables have been defined, they exist in the workspace. You can see what's in the workspace from its desktop window, or by typing

```
>> who
```

Your variables are:
ans s t x

1.5 Saving work

If you enter save myfile, all the variables in the workspace will be saved to a file called myfile. mat in the current directory. You can also select the variables to be saved by typing them after the filename argument. If you later enter load myfile, the saved variables are returned to the workspace (overwriting any values with the same names).

[^3]If you highlight commands in the Command History window, right-click, and select "Create M-File", you can save the typed commands to a text file. This can be very helpful for recreating what you have done. Also see section 3.1.

1.6 Exercises

1. Evaluate the following mathematical expressions in MATLAB.
(a) $\tanh (e)$
(b) $\log _{10}(2)$
(c) $\left|\sin ^{-1}\left(-\frac{1}{2}\right)\right|$
(d) $123456 \bmod 789$ (remainder after division)
2. What is the name of the built-in function that MATLAB uses to:
(a) Compute a Bessel function of the second kind?
(b) Test the primality of an integer?
(c) Multiply two polynomials together?
(d) Plot a vector field?
(e) Report the current date and time?

2 Arrays and matrices

The heart and soul of MATLAB is linear algebra. In fact, MATLAB was originally a contraction of "matrix laboratory." More so than any other language, MATLAB encourages and expects you to make heavy use of arrays, vectors, and matrices.

Some jargon: An array is a collection of numbers, called elements or entries, referenced by one or more indices running over different index sets. In MATLAB, the index sets are always sequential integers starting with 1 . The dimension of the array is the number of indices needed to specify an element. The size of an array is a list of the sizes of the index sets.

A matrix is a two-dimensional array with special rules for addition, multiplication, and other operations. It represents a mathematical linear transformation. The two dimensions are called the rows and the columns. A vector is a matrix for which one dimension has only the index 1 . A row vector has only one row and a column vector has only one column.

Although an array is much more general and less mathematical than a matrix, the terms are often used interchangeably. What's more, in MATLAB there is really no formal distinctionsometimes, not even between a scalar and a 1×1 matrix. The commands below are sorted according to the array/matrix distinction, but MATLAB will usually let you mix them freely. The idea (here as elsewhere) is that MATLAB keeps the language simple and natural. It's up to you to stay out of trouble.

2.1 Building arrays

The simplest way to construct a small array is by enclosing its elements in square brackets.

```
>> A = [1 2 3; 4 5 6; 7 8 9]
A =
    1 2 3
    4 5 6
    7 8 9
>> b = [0;1;0]
b =
        0
        1
        0
```

Separate columns by spaces or commas, and rows by semicolons or new lines. Information about size and dimension is stored with the array. ${ }^{5}$

```
>> size(A)
```

[^4]```
ans =
 3
>> ndims(A)
ans =
 2
>> size(b)
ans =
 3 1
>> ndims(b)
ans =
 2
```

Notice that there is really no such thing as a one-dimensional array in MATLAB. Even vectors are technically two-dimensional, with a trivial dimension. ${ }^{6}$ Table 1 lists more commands for obtaining information about an array.

Table 1: Matrix information commands.

```
size size in each dimension
length size of longest dimension (esp. for vectors)
ndims number of dimensions
find indices of nonzero elements
```

Arrays can be built out of other arrays, as long as the sizes are compatible.

```
>> [A b]
ans =
\begin{tabular}{llll}
1 & 2 & 3 & 0
\end{tabular}
 4 5 6 1
 7 8 9 0
>> [A;b]
??? Error using ==> vertcat
All rows in the bracketed expression must have the same
number of columns.
>> B = [[1 2;3 4] [5;6]]
```

[^5]$B=$

| 1 | 2 | 5 |
| :--- | :--- | :--- |
| 3 | 4 | 6 |

One special array is the empty matrix, which is entered as [].
Bracket constructions are suitable only for very small matrices. For larger ones, there are many useful functions, some of which are shown in Table 2.

Table 2: Commands for building arrays and matrices.

| eye | identity matrix |
| :--- | :--- |
| zeros | all zeros |
| ones | all ones |
| diag | diagonal matrix (or, extract a diagonal) |
| toeplitz | constant on each diagonal |
| triu | upper triangle |
| tril | lower triangle |
| rand, randn | random entries |
| linspace | evenly spaced entries |
| cat | concatenate along a given dimension |
| repmat | duplicate vector across a dimension |

An especially important array constructor is the colon operator.

```
>> 1:8
ans =
 1
>> 0:2:10
ans =
 0
>> 1:-.5:-1
ans =
 1.0000 0.5000 0 -0.5000 -1.0000
```

The format is first: step: last. The result is always a row vector, or the empty matrix if last <first.

### 2.2 Referencing elements

It is frequently necessary to access one or more of the elements of a matrix. Each dimension is given a single index or vector of indices. The result is a block extracted from the matrix. Some examples using the definitions above:

```
>> A (2,3)
ans =
 6
>> b(2) % b is a vector
ans =
 1
>> b([1 3]) % multiple elements
ans =
 0
 0
>> A(1:2,2:3) % a submatrix
ans =
 2 3
 5 6
>> B(1,2:end) % special keyword
ans =
 2 5
>> B(:,3) % "include all" syntax
ans =
 5
 6
>> b(:,[[1 1 1 1 1])
ans =
 0 0 0 0
 1 1 1 1 1 1
 0 0 0 0
```

The colon is often a useful way to construct these indices. There are some special syntaxes: end means the largest index in a dimension, and : alone is short for 1: end-i.e. everything in that
dimension. Note too from the last example that the result need not be a subset of the original array.

Vectors, naturally, can be given a single subscript. But in fact any array can be accessed via a single subscript. Multidimensional arrays are actually stored linearly in memory, varying over the first dimension, then the second, and so on. (Think of the columns of a table being stacked on top of each other.) In this sense the array is equivalent to a vector, and a single subscript will be interpreted in this context. (See sub2ind and ind2sub for more details.)

```
>> A
A =
 1 2 3
 4 5 6
 7 8 9
>> A(2)
ans =
 4
>> A(7)
ans =
 3
>> A([llllll
ans =
 1 4
>> A([1;2;3;4])
ans =
 1
 4
 7
 2
>> A(:)
ans =
 1
 4
 7
 2
 5
 8
```


## 3

6
9

The output of this type of index is in the same shape as the index. The potentially ambiguous A (: ) is always a column vector.

Subscript referencing can be used on either side of assignments.

```
>> B(1,:) = A(1,:)
B =
 1 2 3
 3 4 6
>> C = rand (2,5)
C =
 0.8125 0.4054 0.4909 0.5909 0.5943
 0.2176 0.5699 0.1294 0.8985 0.3020
>> C(:,4) = [] % delete elements
C =
 0.8125 0.4054 0.4909 0.5943
 0.2176 0.5699 0.1294 0.3020
>> C(2,:) = 0 % expand the scalar into the submatrix
C =
 0.8125 0.4054 0.4909 0.5943
>> C(3,1) = 3 % create a new row to make space
C =
\begin{tabular}{rrrr}
0.8125 & 0.4054 & 0.4909 & 0.5943 \\
0 & 0 & 0 & 0 \\
3.0000 & 0 & 0 & 0
\end{tabular}
```

An array is resized automatically if you delete elements or make assignments outside the current size. (Any new undefined elements are made zero.) This can be highly convenient, but it can also cause hard-to-find mistakes.

A different kind of indexing is logical indexing. Logical indices usually arise from a relational operator (see Table 3). The result of applying a relational operator is a logical array, whose elements are 0 and 1 with interpretation as "false" and "true." Using a logical array as an index

[^6]returns those values where the index is 1 (in the single-index sense above).

```
>> B>3
ans =
 0}0
 0 1 1
>> B(ans)
ans =
 4
 6
>> b (b==0)
ans =
 0
 0
>> b([1 1 1]) % first element, three copies
ans =
 0
 0
 0
>> b(logical([1 1 1])) % every element
ans =
 0
 1
 0
```


### 2.3 Matrix operations

The arithmetic operators,,$+-{ }^{\star}{ }^{\wedge}$ are interpreted in a matrix sense. When appropriate, scalars are "expanded" to match a matrix.
>> A+A

Table 3: Relational operators.

$$
\begin{array}{|llll|}
\hline== & \text { equal to } & \sim= & \text { not equal to } \\
< & \text { less than } & > & \text { greater than } \\
<= & \text { less than or equal to } & >= & \text { greater than or equal to } \\
\hline
\end{array}
$$

```
ans =
 2 4 6
 8 10 12
 14 16 18
>> ans-1
ans =
 1 3 5
 7 9 11
 13 15 17
>> 3*B
ans =
\begin{tabular}{lrr}
3 & 6 & 9 \\
9 & 12 &
\end{tabular}
>> A*b
ans =
 2
 5
 8
>> B*A
ans =
 30 36 42
 61 74 87
>> A*B
??? Error using ==> *
Inner matrix dimensions must agree.
>> A^2
ans =
 30 36 42
 66 81 96
 102 126 150
```

The apostrophe ' produces the complex-conjugate transpose (i. e, the hermitian or adjoint) of a matrix.

```
>> A* B' - (B*A' ')
```

```
ans =
 0 0
 0
 0
>> b'*b
ans =
 1
>> b*b'
ans =
 0 0
 0}1
 0 0}
```

    A special operator, \(\backslash\) (backslash), is used to solve linear systems of equations.
    >> $C=\left[\begin{array}{lllllll}1 & 3 & -1 ; & 4 & 0 ; & 0 & 1] ;\end{array}\right.$
$\gg \mathrm{x}=\mathrm{C} \backslash \mathrm{b}$
$\mathrm{x}=$
$-0.1364$
0.3182
0.8182
>> C * $\mathrm{x}-\mathrm{b}$
ans $=$
1.0e-16 *
0.5551
0
0

Several functions from linear algebra are listed in Table 4; there are many, many others.

### 2.4 Array operations

Array operations simply act identically on each element of an array. We have already seen some array operations, namely + and - . But the operators ${ }^{*},,^{\wedge}$, and / have particular matrix interpretations. To get elementwise behavior appropriate for an array, precede the operator with a dot.
>> A
$A=$

Table 4: Functions from linear algebra.

| I | solve linear system (or least squares) |
| :--- | :--- |
| rank | rank |
| det | determinant |
| norm | norm (2-norm, by default) |
| expm | matrix exponential |
| lu | LU factorization (Gaussian elimination) |
| qr | QR factorization |
| chol | Cholesky factorization |
| eig | eigenvalue decomposition |
| svd | singular value decomposition |



```
>> (B+i)'
ans =
 -1.0000 - 1.0000i 3.0000 - 1.0000i
 -2.0000-1.0000i 4.0000-1.0000i
 -3.0000-1.0000i 6.0000-1.0000i
>> (B+i).'
ans =
 -1.0000 + 1.0000i 3.0000 + 1.0000i
 -2.0000 + 1.0000i 4.0000 + 1.0000i
 -3.0000 + 1.0000i 6.0000 + 1.0000i
```

There is no difference between ' and .' for real-valued arrays. Most elementary functions, such as $\sin$, exp, etc., act elementwise.

```
>> B
```

$B=$

| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 3 | 4 | 6 |

```
>> cos(pi*B)
```

ans =
$\begin{array}{lll}-1 & 1 & -1\end{array}$
$\begin{array}{lll}-1 & 1 & 1\end{array}$
>> $\exp (\mathrm{A})$
ans $=$
1.0e+03 *
$0.0027 \quad 0.0074 \quad 0.0201$
$0.0546 \quad 0.1484 \quad 0.4034$
$1.0966 \quad 2.9810 \quad 8.1031$
>> expm(A)
ans =
1.0e+06 *

| 1.1189 | 1.3748 | 1.6307 |
| :--- | :--- | :--- |
| 2.5339 | 3.1134 | 3.6929 |
| 3.9489 | 4.8520 | 5.7552 |

It's easy to forget that exp (A) is an array function. Use expm (A) to get the matrix exponential $I+A+A^{2} / 2+A^{3} / 6+\cdots$.

Elementwise operators are often useful in functional expressions. Consider evaluating a Taylor approximation to $\sin (t)$ :

```
>> t = (0:0.25:1)*pi/2
```

$t=$

$$
\begin{array}{lllll}
0 & 0.3927 & 0.7854 & 1.1781 & 1.5708
\end{array}
$$

>> t - t.^3/6 + t.^5/120
ans $=$

| 0 | 0.3827 | 0.7071 | 0.9245 | 1.0045 |
| :--- | :--- | :--- | :--- | :--- |

This is easier and better than writing a loop for the calculation. (See section 6.3.)
Another kind of array operation works in parallel along one dimension of the array, returning a result that is one dimension smaller.

```
>> C
C =
 1 3 -1
 2 4 0
 6 0
>> sum(C,1)
ans =
 9 7 0
>> sum(C,2)
ans =
 3
 6
 7
```

Other functions that behave this way are shown in Table 5.

Table 5: Reducing functions.

| max | sum | mean | any |
| :---: | :---: | :---: | :---: |
| min | diff | median | all |
| sort | prod | std | cumsum |

### 2.5 Sparse matrices

It's natural to think of a matrix as a complete rectangular table of numbers. However, many realworld matrices are both extremely large and very sparse, meaning that most entries are zero. ${ }^{8}$ In such cases it's wasteful or downright impossible to store every entry. Instead one could for example keep a list of nonzero entries and their locations. MATLAB has a sparse data type for this purpose. The sparse and full commands convert back and forth and lay bare the storage difference.

```
>> A = vander(1:3);
>> sparse(A)
ans =
 (1,1) 1
 (2,1) 4
 (3,1) 9
 (1,2) 1
 (2,2) 2
 (3,2) 3
 (1,3) 1
 (2,3) 1
 (3,3) 1
>> full(ans)
ans =
\begin{tabular}{lll}
1 & 1 & 1 \\
4 & 2 & 1 \\
9 & 3 & 1
\end{tabular}
```

Sparsifying a standard full matrix is usually not the right way to create a sparse matrix-you should avoid creating very large full matrices, even temporarily. One alternative is to give sparse the raw data required by the format.

```
>> sparse(1:4,8:-2:2,[2 3 5 7])
ans =
 (4,2) 7
 (3,4) 5
 (2,6) 3
 (1,8) 2
```

(This is the functional inverse of the find command.) Alternatively, you can create an empty sparse matrix with space to hold a specified number of nonzeros, and then fill in using standard

[^7]subscript assignments. Another useful sparse building command is spdiags, which builds along the diagonals of the matrix.

```
>> M = ones(6,1)*[-20 Inf 10]
M =
 -20 Inf 10
 -20 Inf 10
>> full(spdiags(M,[-2 0 1],6,6))
ans =
\begin{tabular}{rrrrrr}
Inf & 10 & 0 & 0 & 0 & 0 \\
0 & Inf & 10 & 0 & 0 & 0 \\
-20 & 0 & Inf & 10 & 0 & 0 \\
0 & -20 & 0 & Inf & 10 & 0 \\
0 & 0 & -20 & 0 & Inf & 10 \\
0 & 0 & 0 & -20 & 0 & Inf
\end{tabular}
```

The nnz command tells how many nonzeros are in a given sparse matrix. Since it's impractical to view directly all the entries (even just the nonzeros) of a realistically sized sparse matrix, the spy command helps by producing a plot in which the locations of nonzeros are shown. For instance, spy (bucky) shows the pattern of bonds among the 60 carbon atoms in a buckyball.

MATLAB has a lot of ability to work intelligently with sparse matrices. The arithmetic opera-tors,,$+- \star$, and ^ use sparse-aware algorithms and produce sparse results when applied to sparse inputs. The backslash $\backslash$ uses sparse-appropriate linear system algorithms automatically as well. There are also functions for the iterative solution of linear equations, eigenvalues, and singular values.

### 2.6 Exercises

1. (a) Check the help for diag and use it (maybe more than once) to build the $16 \times 16$ matrix

$$
D=\left[\begin{array}{ccccccc}
-2 & 1 & 0 & 0 & \cdots & 0 & 1 \\
1 & -2 & 1 & 0 & \cdots & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1 & -2 & 1 & 0 \\
0 & 0 & \cdots & 0 & 1 & -2 & 1 \\
1 & 0 & 0 & \cdots & 0 & 1 & -2
\end{array}\right]
$$

(b) Now read about toeplitz and use it to build $D$.
(c) Use toeplitz and whatever else you need to build

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{llll}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{2} & 1 & \frac{1}{2} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{2} & 1 & \frac{1}{2} \\
\frac{1}{4} & \frac{1}{3} & \frac{1}{2} & 1
\end{array}\right] \quad\left[\begin{array}{llll}
4 & 3 & 2 & 1 \\
3 & 2 & 1 & 2 \\
2 & 1 & 2 & 3 \\
1 & 2 & 3 & 4
\end{array}\right]
$$

Do not just enter the elements directly-your solutions should be just as easy to use if the matrices were $100 \times 100$.
2. Find a MATLAB one-line expression to create the $n \times n$ matrix $A$ satisfying

$$
a_{i j}= \begin{cases}1, & \text { if } i-j \text { is prime } \\ 0, & \text { otherwise }\end{cases}
$$

3. Let $A$ be a random $8 \times 8$ matrix. Find the maximum values (a) in each column, (b) in each row, and (c) overall. Also (d) find the row and column indices of all elements that are larger than 0.25 .
4. Suppose $A$ is a matrix whose entries are all positive numbers. Write one line that will multiply each column of $A$ by a scalar so that in the resulting matrix, every column sums to 1 . (To make it more difficult, suppose that zero entries are allowed and leave a column that sums to zero unchanged.)
5. A magic square is an $n \times n$ matrix in which each integer $1,2, \ldots, n^{2}$ appears once and for which all the row, column, and diagonal sums are identical. MATLAB has a command magic that returns magic squares. Check its output at a few sizes and use MATLAB to verify the summation property. (The "antidiagonal" sum will be the trickiest.)
6. Suppose we represent a standard deck of playing cards by a vector v containing one copy of each integer from 1 to 52 . Show how to "shuffle" v by rearranging its contents in a random order. (Note: There is one very easy answer to this problem-if you look hard enough.)
7. Examine the eigenvalues of the family of matrices

$$
D_{N}=-N^{2}\left[\begin{array}{cccccc}
-2 & 1 & 0 & 0 & \cdots & 1 \\
1 & -2 & 1 & 0 & \cdots & 0 \\
0 & 1 & -2 & 1 & \cdots & 0 \\
& & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 1 & -2 & 1 \\
1 & 0 & 0 & \cdots & 1 & -2
\end{array}\right]
$$

where $D_{N}$ is $N \times N$, for several growing values of $N$; for example, $N=4,8,16,32$. (This is one approximate representation of the second-derivative operator for periodic functions. The smallest eigenvalues are near integer multiples of a simple number.)
8. Use several random instances of an $m \times n$ matrix $A$ to convince yourself that

$$
\|A\|_{F}^{2}=\sum_{i=1}^{K} \sigma_{i}^{2}
$$

where $K=\min \{m, n\},\left\{\sigma_{1}, \ldots, \sigma_{K}\right\}$ are the singular values of $A$, and $\|\cdot\|_{F}$ is the Frobenius norm (root-mean-square of the elements of $A$ ).
9. Let $B=$ bucky and make a series of spy plots of $B^{2}, B^{3}$, etc. to see the phenomenon of fill-in: many operations, including multiplication, increase the density of nonzeros. (Can you see why the $(i, j)$ entry of $B^{n}$ is the number of paths of length $n$ between nodes $i$ and $j$ ?) What fill-in do you see with inv (B)?

## 3 Scripts and functions

An M-file is a plain text file containing MATLAB commands and saved with the filename extension .m. There are two types, scripts and functions. MATLAB comes with a pretty good editor that is tightly integrated into the environment. Start it using open or edit. However, you are free to use any text editor. An M-file should be saved in the path in order to be executed. The path is just a list of directories (folders) in which MATLAB will look for files. Use editpath or menus to see and change the path.

There is no need to compile either type of M-file. Simply type in the name of the file (without the extension) in order to run it. Changes that are saved to disk will be included in the next call to the function or script. (You can alter this behavior with mlock.)

One important type of statement in an M-file is a comment, which is indicated by a percent sign \%. Any text on the same line after a percent sign is ignored (unless \% appears as part of a string in quotes). Furthermore, the first contiguous block of comments in an M-file serves as documentation for the file and will be typed out in the command window if help is used on the file. For instance, say the following is saved as myscript.m on the path:

```
% This script solves the nasty homework problem assigned by
% Professor Driscoll.
x = rand(1); % He'll never notice.
```

Then at the prompt one would find

```
>> help myscript
 This script solves the nasty homework problem assigned by
 Professor Driscoll.
```


### 3.1 Using scripts effectively

The contents of a script file are literally interpreted as though they were typed at the prompt. In fact, some people prefer to use MATLAB exclusively by typing all commands into scripts and running them. Good reasons to use scripts are

- Creating or revising a sequence of more than four or five lines.
- Reproducing or interpreting your work at a later time.
- Running a CPU-intensive job in the background, allowing you to log off.

The last point here refers specifically to UNIX. For example, suppose you wrote a script called run.m that said:

```
result = execute_big_routine(1);
result = another_big_routine(result);
result = an_even_bigger_routine(result);
save rundata result
```

At the UNIX prompt in the directory of run.m, you would enter (using csh style)

```
nice +19 matlab < run.m >! run.log &
```

which would cause your script to run in the background with low priority. The job will continue to run until finished, even if you log off. The output that would have been typed to the screen is redirected to run.log. You will usually need at least one save command to save your results. Use it often in the script in case of a crash or other interruption. Also take pains to avoid taking huge chunks of memory or disk space when running in an unattended mode. It's advisable to start the process and monitor it using top in the UNIX shell for a little while to make sure it does not gobble up resources unexpectedly.

### 3.2 Functions

Functions are the main way to extend the capabilities of MATLAB. Compared to scripts, they are much better at compartmentalizing tasks. Each function starts with a line such as

```
function [out1,out2] = myfun(in1,in2,in3)
```

The variables in1, etc. are input arguments, and out1 etc. are output arguments. You can have as many as you like of each type (including zero) and call them whatever you want. The name my fun should match the name of the disk file.

Here is a function that implements (badly, it turns out) the quadratic formula.

```
function [x1,x2] = quadform(a,b,c)
d = sqrt(b^2 - 4*a*c);
x1 = (-b + d) / (2*a);
x2 = (-b - d) / (2*a);
```

From MATLAB you could call

```
>> [r1,r2] = quadform(1,-2,1)
r1 =
 1
r2 =
 1
```

One of the most important features of a function is its local workspace. Any arguments or other variables created while the function executes are available only within the function. Conversely, the variables available to the command line (the so-called base workspace) are normally not visible to the function. If during the function execution, other functions are called, each of those calls also sets up a private workspace. These restrictions are called scoping, and they make it possible to write complex programs without worrying about name clashes. The values of the input arguments are copies of the original data, so any changes you make to them will not change anything outside the function's scope. ${ }^{9}$ In general, the only communication between a function and its caller is through the input and output arguments (though see section 6.5 for exceptions). You can always see the variables defined in the current workspace by typing who or whos.

Another important aspect of function M-files is that most of the functions built into MATLAB (except core math functions) are themselves M-files that you can read and copy. This is an excellent way to learn good programming practice-and dirty tricks.

### 3.3 Conditionals: if and switch

Often a function needs to branch based on runtime conditions. MATLAB offers structures for this similar to those in most languages.

Here is an example illustrating most of the features of if.

```
if isinf(x) | ~isreal(x)
 disp('Bad input!')
 y = NaN;
elseif (x == round(x)) && (x > 0)
 y = prod(1:x-1);
else
 y = gamma(x);
end
```

The conditions for if statements may involve the relational operators of Table 3, or functions such as isinf that return logical values. Numerical values can also be used, with nonzero meaning true, but "if $x^{\sim}=0$ " is better practice than "if $x$ ". Note also that if the if clause is a nonscalar array, it is taken as true only when all the elements are true/nonzero. To avoid confusion, it's best to use any or all to reduce array logic to scalar values.

Individual conditions can be combined using

$$
\begin{array}{l|ll}
\&(\text { logical AND }) & \text { (logical OR) } & \sim(\text { logical NOT })
\end{array}
$$

Compound logic in if statements can be short-circuited. As a condition is evaluated from left to right, it may become obvious before the end that truth or falsity is assured. At that point, evaluation of the condition is halted. This makes it convenient to write things like

[^8]```
if (length(x) > 2) & (x(3)==1) ...
```

that otherwise could create errors or be awkward to write. ${ }^{10}$
The if/elseif construct is fine when only a few options are present. When a large number of options are possible, it's customary to use switch instead. For instance:

```
switch units
    case 'length'
        disp('meters')
    case 'volume'
        disp('liters')
    case 'time'
        disp('seconds')
    otherwise
        disp('I give up')
end
```

The switch expression can be a string or a number. The first matching case has its commands executed. ${ }^{11}$ If otherwise is present, it gives a default option if no case matches.

3.4 Loops: for and while

Many programs require iteration, or repetitive execution of a block of statements. Again, MATLAB is similar to other languages here.

This code illustrates the most common type of for loop:

```
>> f = [1 1];
>> for n = 3:10
    f(n) = f(n-1) + f(n-2);
    end
```

You can have as many statements as you like in the body of the loop. The value of the index n will change from 3 to 10 , with an execution of the body after each assignment. But remember that 3:10 is really just a row vector. In fact, you can use any row vector in a for loop, not just one created by a colon. For example,

```
>> x = 1:100; s = 0;
>> for j = find(isprime(x))
    s = s + x(j);
    end
```

[^9]This finds the sum of all primes less than 100. (For a better version, though, see page 49.)
A warning: If you are using complex numbers, you might want to avoid using i as the loop index. Once assigned a value by the loop, i will no longer equal $\sqrt{-1}$. However, you can always use $1 i$ for the imaginary unit.

It is sometimes necessary to repeat statements based on a condition rather than a fixed number of times. This is done with while.

```
while x > 1
    x = x/2;
end
```

The condition is evaluated before the body is executed, so it is possible to get zero iterations. It's often a good idea to limit the number of repetitions, to avoid infinite loops (as could happen above if x is infinite). This can be done using break.

```
n = 0;
while x > 1
    x = x/2;
    n = n+1;
    if n > 50, break, end
end
```

A break immediately jumps execution to the first statement after the loop.

3.5 Debugging and profiling

To debug a program that doesn't work, ${ }^{12}$ you can set breakpoints in one or more functions. (See the Debug menu in the Editor.) When MATLAB reaches a breakpoint, it halts and lets you inspect and modify all the variables currently in scope-in fact, you can do anything at all from the command line. You can then continue execution normally or step by step. It's also possible to set non-specific breakpoints for error and warning conditions. See the help on debug for all the details.

Sometimes a program spends most of its running time on just a few lines of code. These lines are then obvious candidates for optimization. You can find such lines by profiling, which keeps track of time spent on every line of every function. Profiling is also a great way to determine function dependencies (who calls whom). Get started by entering profile viewer.

[^10]
3.6 Exercises

1. Write a function quadform 2 that implements the quadratic formula differently from quadform above (page 24). Once d is computed, use it to find

$$
x_{1}=\frac{-b-\operatorname{sign}(b) d}{2 a}
$$

which is the root of largest magnitude, and then use the identity $x_{1} x_{2}=c / a$ to find x_{2}. Use both quadform and quadform2 to find the roots of $x^{2}-\left(10^{7}+10^{-7}\right) x+1$. Do you see why quadform2 is better?
2. The degree- n Chebyshev polynomial is defined by

$$
T_{n}(x)=\cos \left[n \cos ^{-1}(x)\right], \quad-1 \leq x \leq 1 .
$$

We have $T_{0}(x)=1, T_{1}(x)=x$, and a recursion relation:

$$
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x), \quad n \geq 1
$$

Write a function chebeval (x, N) that evaluates all the Chebyshev polynomials of degree less than or equal to N at all of the points in column vector x . The result should be a matrix of size length (x) by $\mathrm{N}+1$.
3. One way to compute the exponential function e^{x} is to use its Taylor series expansion around $x=0$. Unfortunately, many terms are required if $|x|$ is large. But a special property of the exponential is that $e^{2 x}=\left(e^{x}\right)^{2}$. This leads to a scaling and squaring method: Divide x by 2 repeatedly until $|x|<1 / 2$, use a Taylor series (16 terms should be more than enough), and square the result repeatedly. Write a function expss (x) that does this. (The function polyval can help with evaluating the Taylor expansion.) Test your function on x values $-30,-3,3,30$.
4. Let x and y be column vectors describing the vertices of a polygon (given in order). Write functions polyperim (x, y) and polyarea (x, y) that compute the perimeter and area of the polygon. For the area, use a formula based on Green's theorem:

$$
A=\frac{1}{2}\left|\sum_{k=1}^{n} x_{k} y_{k+1}-x_{k+1} y_{k}\right|
$$

Here n is the number of vertices and it's understood that $x_{n+1}=x_{1}$ and $y_{n+1}=y_{1}$. Test your function on a square and an equilateral triangle.
5. If a data source produces symbol k with probability p_{k}, the first-order entropy of the source is defined as

$$
H_{1}=-\sum_{k} p_{k} \log _{2} p_{k}
$$

Essentially H_{1} is the number of bits needed per symbol to encode a long message; i.e., it measures the amount of information content (and therefore the potential success of compression strategies). The value $H_{1}=0$ corresponds to one symbol only-no information-while for M symbols of equal probability, $H_{1}=\log _{2} M$.
Write a function $[\mathrm{H}, \mathrm{M}]=$ entropy (v) that computes entropy for a vector v . The probabilities should be computed empirically, by counting occurrences of each unique symbol and dividing by the length of v . (The built-in functions find and unique may be helpful.) Try your function on some carefully selected examples with different levels of information content. Once source of data is to use load clown; v = X(:);. You can also find data sources from help gallery and (if you have the Image Processing Toolbox) help imdemos. You might also want to stick with integer data by using round.

4 More on functions

In the last section we covered the bare minimum on functions. Here we elaborate on more concepts and tools that at some point you will probably find essential.

4.1 Subfunctions and nested functions

A single M-file may hold more than one function definition. The function header line at the top of a file defines the primary function of the file. Two other types of functions can be in the same file: subfunctions and nested functions.

A subfunction is mostly a convenient way to avoid unnecessary files. The subfunction begins with a new header line after the end of the primary function. Every subfunction in the file is available to be called by the primary function and the other subfunctions, but they have private workspaces and otherwise behave like functions in separate files. The difference is that only the primary function, not the subfunctions, can be called from sources outside the file. ${ }^{13}$ As a silly example, consider

```
function [x1,x2] = quadform(a,b,c)
d = discrim(a,b,c);
x1 = (-b + d) / (2*a);
x2 = (-b - d) / (2*a);
end % quadform()
function D = discrim(a,b,c)
D = sqrt(b^2 - 4*a*c);
end % discrim()
```

(The end line is optional for single-function files, but it is a good idea when subfunctions are involved and mandatory when using nested functions.) Since the subfunction discrim has its own workspace, changes made to a inside discrim would not propagate into the rest of quadform; nor would any other variables in the primary function be available to discrim.

Nested functions behave a little differently. They are defined within the scope of another function, and they share access to the containing function's workspace. For example, we can recast our quadratic formula yet again:

```
function [x1,x2] = quadform(a,b,c)
    function discrim
    d = sqrt(b^2 - 4*a*c);
    end % discrim()
```

[^11]```
discrim;
x1 = (-b + d) / (2*a);
x2 = (-b - d) / (2*a);
end % quadform()
```

As a nested function, discrim can read the values $a, b$, and $c$ without having them passed as input, and its assignment to d makes a change visible to quadform.

The purpose of nested functions is not made clear in this example-in fact, the nested function version is inferior. But nested functions make certain important programming tasks a lot easier, as explained in section 4.3.

### 4.2 Inline and anonymous functions

Sometimes you may need a quick function definition that is temporary-you don't care if the function is still around tomorrow. You can avoid writing M-files for such functions. The "oldfashioned" way to do this is by using an inline function. Starting in MATLAB 7, a better alternative became available: the anonymous function. Syntactically, the setup is similar. The first example above would start with

```
sincos = @(x) sin(x) + cos(x);
```

and otherwise be unchanged. The second example becomes

```
w = @(x,t,c) cos(x-c*t);
```

Anonymous functions add a major wrinkle: they can "capture" variables used in their definition but not passed as arguments. As an illustration, consider the process of interpolation, creating a continuous function that passes through given data. The built-in function interp1 provides several methods for this; however, each call to interp1 requires passing in the data to be interpolated. Using anonymous functions we can hide, or least encapsulate, this process:

```
x = 1:10; y = rand(1,10);
f_lin = @(t) interp1(x,y,t,'linear');
f_spl = @(t) interpl(x,y,t,'spline');
plot(x,y,'o'), hold on
y = rand(1,10); plot(x,y,'rs')
g = @(t) interp1(x,y,t,'pchip');
fplot(f_lin,[1 10],'b')
fplot(f_spl,[1 10],'k')
fplot(g,[1 10],'r')
```

The two variants of $f$ always interpolate the first random data set-even after the variable y has been changed-while $g$ interpolates the second. Each of them is a function of just one independent
variable, the one that is usually of interest. Reproducing the effect of the above script by other means is possible but considerably more awkward. A more advanced use of anonymous functions can be found in section 4.3.

Nested functions and anonymous functions have much in common but are not quite identical. Nested functions always share scope with their enclosing parent; their behavior can be changed by and create changes within that scope. An anonymous function can be influenced by variables that were in scope at its creation time, but thereafter it acts autonomously.

### 4.3 Function functions

Many problems in scientific computation involve operating on functions-finding roots, approximating integrals (quadrature), and solving differential equations are three of the most common examples. In many cases one can use or write a "black box" to solve this type of problem in many contexts. Since these black box functions operate on other functions, MATLAB glibly calls them function functions. (See the help topic funfun for a complete list.)

A function function needs to take one or more functions as input parameters. One way to do this is by using inline or anonymous functions (section 4.2). For example, the built-in fzero finds a root of a scalar function of one variable. One way to use it would be

```
>> f = @(x) sin(x);
>> fzero(f,3)
ans =
 3.1416
```

This example is needlessly indirect, however-we can pass in the sin function directly, if we refer to it using a special syntax:

```
>> fzero(@sin,3)
ans =
 3.1416
```

The name @sin is called a function handle and is a way to refer to a function abstractly, rather than invoking it immediately. By contrast, the syntax fzero (sin, 3) would cause an error, because the sin function would be called first and with no input arguments.

Function handles can be created for any function in scope, including subfunctions and nested functions. This can be extremely handy! Suppose for instance that we want to write a function that integrates an interpolant for given data. The implementation is complicated somewhat by the fact that the built-in interpolator interp1 accepts four arguments: vectors of the $x$ and $y$ coordinates of the data to be interpolated, the value(s) $t$ where the interpolant is to be evaluated, and an optional choice of the method of interpolation. For our integration problem, the data points
and the method should remain fixed while we integrate with respect to the variable $t$. Here is an implementation that embodies that idea:

```
function I = interpquad(x,y)
method = 'pchip';
I = quad(@interpolant,x(1),x(end));
 function f = interpolant(t)
 f = interp1(x,y,t,method);
 end % interpolant()
end % interpquad()
```

The nested function interpolant captures the data values x and y and option method of its parent, and hides them behind the face of a function that depends on the integration variable $t$ only. ${ }^{14}$ This is the function that we tell quad to integrate. Note that quad will invoke interpolant many times in the course of the integration. This is allowed by the function handle and creates an exception to the rule that nested functions are visible only within the scope of their parent.

Sooner or later you will probably have to write function functions of your own. This requires that you invoke a function that was passed as an argument. For example, suppose that instead of quad for integration, we want to use a much cruder left-endpoint type of Riemann sum as an approximation.

```
function I = quadrs(integrand,a,b,n)
h = (b-a)/n; % subinterval width
x = a + (0:n)*h; % endpoints of subintervals
f = integrand(x(1:n));
I = h*sum(f);
```

Here integrand is an anonymous function or a function handle passed in as an argument. ${ }^{15}$

### 4.4 Errors and warnings

MATLAB functions may encounter statements that are impossible to execute (for example, multiplication of incompatible matrices). In that case an error is thrown: execution of the function halts, a message is displayed, and the output arguments of the function are ignored. You can throw errors in your own functions with the error statement, called with a string that is displayed as the message. Similar to an error is a warning, which displays a message but allows execution to continue. You can create these using warning.

[^12]Sometimes you would like the ability to recover from an error in a subroutine and continue with a contingency plan. This can be done using the try-catch construct. For example, the following will continue asking for a statement until you give it one that executes successfully.

```
done = false;
while ~done
 state = input('Enter a valid statement: ','s');
 try
 eval(state);
 done = true;
 catch
 disp('That was not a valid statement! Look:')
 disp(lasterr)
 end
end
```

Within the catch block you can find the most recent error message using lasterr.

### 4.5 Exercises

1. Write a function newton ( $f \mathrm{ff}, \mathrm{x} 0, \mathrm{tol}$ ) that implements Newton's iteration for rootfinding on a scalar function:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

The first input is a handle to a function computing $f$ and $f^{\prime}$, and the second input is an initial root estimate. Continue the iteration until either $\left|f\left(x_{n+1}\right)\right|$ or $\left|x_{n+1}-x_{n}\right|$ is less than tol. You might want a "safety valve" as well to avoid an infinite loop.
2. Modify newton from the previous exercise so that it works on a system of equations $\mathbf{F}(\mathbf{x})$. The function $f d f$ now returns the vector $F$ and the Jacobian matrix $J$, and the update is written mathematically as

$$
\mathbf{x}_{n+1}=\mathbf{x}_{n}-J^{-1} \mathbf{F}\left(\mathbf{x}_{n}\right),
$$

although in numerical practice one does not compute the inverse of the Jacobian but solves a linear system of equations in which $\mathbf{F}\left(\mathbf{x}_{n}\right)$ is the right-hand side.
3. Write a function $I=\operatorname{trap}(f, a, b, n)$ that implements the trapezoidal quadrature rule:

$$
\int_{a}^{b} f(x) d x \approx \frac{h}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
$$

where $h=(b-a) / n$ and $x_{i}=a+i h$. Test your function on $\sin (x)+\cos (x)$ for $0 \leq x \leq \pi / 3$. For a greater challenge, write a function simp for Simpson's rule,

$$
\int_{a}^{b} f(x) d x \approx \frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+2 f\left(x_{4}\right)+\cdots+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] .
$$

(This formula requires $n$ to be even. You may choose to check the input for this.)
4. The implementation of interpquad on page 33 is not optimal in terms of execution speed. The reason is that each call to interp1 has to do some preliminary calculations based on $x, y$, and the method in order to compute interpolants. These preliminary calculations are independent of $t$, so computing them anew each time is very wasteful.
Read the help on interp1 on the piecewise polynomial option for output, and use it to modify interpquad to remove this problem.
5. Many simple financial instruments that have regular equal payments, such as car loans or investment annuities, can be modeled by the equation

$$
F=P\left(\frac{(1+r)^{t}-1}{r}\right)
$$

where $P$ is the regular payment, $r$ is a fixed interest rate (say, $r=0.05$ for $5 \%$ interest), $t$ is the number of payment intervals elapsed, and $F(t)$ is the accumulated value of the instrument at time $t$. This equation is not easily solved for $r$.
Write a script that finds $r$ when $P=200, t=30$, and $F$ takes the values $10000,15000, \ldots$, 40000. The simplest approach is to write a loop that creates an anonymous function and calls fzero.
6. Lambert's $W$ function is defined as the inverse of the function $f(x)=x e^{x}$. It has no simple analytic expression. Write a function $\mathrm{w}=$ lambert (x) that evaluates Lambert's $W$ at any value of $x>0$. For best style, lambert should have a subfunction that is passed in the call to fzero. (Hint: You are to solve the expression $x=y e^{y}$ for $y$ given $x$. Use fzero.)

## 5 Graphics

Graphical display is one of MATLAB's greatest strengths-and most complicated subjects. The basics are quite simple, but you also get complete control over practically every aspect of each graph, and with that power comes complexity.

Graphical objects are classified by type. The available types lie in a strict hierarchy, as shown in Figure 1. Each figure has its own window. Inside a figure is one or more axes (ignore the other types on this level until section 9). You can make an existing figure or axes "current" by clicking on it.

Inside the axes are drawn data-bearing objects like lines and surfaces. While there are functions called line and surface, you will very rarely use those. Instead you use friendlier functions that create these object types inside the current axes. Once plot objects have been created, you can modify their appearance and add axes labels, titles, and other annotations to the graph.

### 5.1 2D plots

The most fundamental plotting command is plot. Normally it uses line segments to connect points given by two vectors of $x$ and $y$ coordinates. Here is a simple example.

```
>> t = pi*(0:0.02:2);
>> plot(t,sin(t))
```

A line object is drawn in the current axes of the current figure (these things are created if necessary). The line may appear to be a smooth, continuous curve. However, it's really just a game of "connect the dots," as you can see by entering

```
>> plot(t,sin(t),'o-')
```



Figure 1: Graphics object hierarchy.

Now a circle is drawn at each of the points that are being connected. Just as $t$ and $\sin (t)$ are really vectors, not functions, curves in MATLAB are really joined line segments. ${ }^{16}$

If you now say
>> plot(t, $\left.\cos (t), r^{\prime}\right)$
you will get a red curve representing $\cos (t)$. The curve you drew earlier is erased. To add curves, rather than replacing them, use hold.

```
>> plot(t,sin(t),'b')
>> hold on
>> plot(t,cos(t),'r')
```

You can also do multiple curves in one go, if you use column vectors:

```
>> t = (0:0.01:1)';
>> plot(t,[t t.^2 t.^3])
```

Other useful 2D plotting commands are given in Table 6. See a bunch more by typing help graph2d.

Table 6: 2D plotting commands

| figure | Open a new figure window. |
| :--- | :--- |
| subplot | Multiple axes in one figure. |
| semilogx, semilogy, loglog | Logarithmic axis scaling. |
| axis, xlim, ylim | Axes limits. |
| legend | Legend for multiple curves. |
| print | Send to printer. |

You may zoom in to particular portions of a plot by clicking on the magnifying glass icon in the figure and drawing a rectangle. See help zoom for more details.

### 5.2 3D plots

Plots of surfaces and such for functions $f(x, y)$ also operate on the "connect the dots" principle, but the details are more difficult. The first step is to create a grid of points in the $x y$ plane. These are the points where $f$ is evaluated to get the "dots" in 3D.

Here is a typical example:

[^13]```
>> x = pi*(0:0.02:1);
>> y = 2*x;
>> [X,Y] = meshgrid(x,Y);
>> surf(X,Y,sin(X.^2+Y))
```

Once a 3D plot has been made, you can use the rotation button in the figure window to manipulate the 3D viewpoint. There are additional menus that give you much more control of the view, too.

The surf plot begins by using meshgrid to make an $x-y$ grid that is stored in the arrays X and Y. To see the grid graphically, use
plot(X(:),Y(:),'k.')
With the grid so defined, the expression $\sin \left(\mathrm{X} .{ }^{\wedge} 2+\mathrm{Y}\right)$ is actually an array of values of $f(x, y)=$ $\sin \left(x^{2}+y\right)$ on the grid. (This array could be assigned to another variable if you wish.) Finally, surf makes a solid-looking surface in which color and apparent height describe the given values of f. An alternative command mesh is similar to surf but makes a "wireframe" surface. The most common 3D plotting commands are shown in Table 7.

Table 7: 3D plotting commands

```
surf,mesh,waterfall Surfaces in 3D.
colorbar Show color scaling.
plot3 Curves in space.
pcolor Top view of a colored surface.
contour,contourf Contour plot.
```


5.3 Annotation

A bare graph with no labels or title is rarely useful. The last step before printing or saving is usually to label the axes and maybe give a title. For example,

```
>> t = 2*pi*(0:0.01:1);
>> plot(t,sin(t))
>> xlabel('time')
>> ylabel('amplitude')
>> title('Simple Harmonic Oscillator')
```

You can also add legends, text, arrows, or text/arrow combinations to help label diffrent data.

5.4 Auto function plots

When plotting a mathematical expression, you must pick the evaluation points of the plot before calling plot or surf. This extra step can be skipped by using special alternative plotting commands for mathematical expressions or MATLAB functions.

```
>> ezplot( @(x) exp(3*sin(x)-cos(2*x)), [0 4] )
>> ezsurf( '1/(1+x^2+2* y^2)', [-3 3], [-3 3] )
>> ezcontour( @(x,y) x.^2-y.^2, [-1 1], [-1 1] )
```


5.5 Handles and properties

Every rendered object has a handle, which is basically an ID number. This handle can be used to look at and change the object's properties, which control just about every aspect of the object's appearance and behavior. (You can see a description of all property names in the Help Browser.) Handles are returned as outputs of most plotting commands. You can get the handles of the current figure, current axes, or current object (most recently clicked) from gcf, gca, and gco. The handle of a figure is just the integer number of the figure window, and the Root object has handle zero.

Properties can be accessed and changed by the functions get and set, or by clicking on the "Edit Plot" button in a figure window and double-clicking on the object. ${ }^{17}$ Here is just a taste of what you can do:

```
>> h = plot(t,sin(t))
>> set(h,'color','m','linewidth',2,'marker','s')
>> set(gca,'pos',[0 0 1 1],'visible','off')
```

Here is a way to make a "dynamic" graph or simple animation:

```
>> clf, axis([-2 2 -2 2]), axis equal
>> h = line(NaN,NaN,'marker','o','linestyle','-','erasemode','none');
>> t = 6*pi*(0:0.02:1);
>> for n = 1:length(t)
    set(h,'XData', 2* cos(t (1:n)),'YData', sin(t (1:n)))
    pause(0.05)
    end
```

From this example you see that even the data displayed by an object are properties (XData and YData) accessed by get and set. Among other things, this means you can extract the precise values used to plot any object from the object itself.

Because of the way handles are used, plots in MATLAB are usually created first in a basic form and then modified to look exactly as you want. However, it can be useful to change the default

[^14]property values that are used to render an object when no parameters are given explicitly. You can do this by resetting the defaults at any level above the target object's type. For instance, to make sure that all future Text objects in the current figure have font size 10, enter
>> set (gcf,' defaulttextfontsize', 10)
If you want this to be the default in all current and future figures in this MATLAB session, use the root object 0 rather than gcf. Finally, you can make it a global default for all future MATLAB sessions by placing the set command in a file called startup. m in a certain directory (see the documentation).

5.6 Color

The coloring of lines and text is easy to understand. Each object has a Color property that can be assigned an RGB (red, green, blue) vector whose entries are between zero and one. In addition many one-letter string abbreviations are understood (see help plot).

Surfaces are different. To begin with, the edges and faces of a surface may have different color schemes, accessed by EdgeColor and FaceColor properties. You specify color data at all the points of your surface. In between the points the color is determined by shading. In flat shading, each face or mesh line has constant color determined by one boundary point. In interpolated shading, the color is determined by interpolation of the boundary values. While interpolated shading makes much smoother and prettier pictures, it can be very slow to render, particularly on printers. ${ }^{18}$ Finally, there is faceted shading which uses flat shading for the faces and black for the edges. You select the shading of a surface by calling shading after the surface is created.

Furthermore, there are two models for setting color data:

Indirect Also called indexed. The colors are not assigned directly, but instead by indexes in a lookup table called a colormap. This is how things work by default.

Direct Also called truecolor. You specify RGB values at each point of the data.
Direct color is more straightforward, but it produces bigger files and is most suitable for photos and similar images.

Here's how indirect mapping works. Just as a surface has XData, YData, and ZData properties, with axes limits in each dimension, it also has a CData property and "color axis" limits. The color axis is mapped linearly to the colormap, which is a 64×3 list of RGB values stored in the figure. A point's CData value is located relative to the color axis limits in order to look up its color in the colormap. By changing the figure's colormap, you can change all the surface colors instantly. Consider these examples:

[^15]```
>> [X,Y,Z] = peaks; % some built-in data
>> surf(X,Y,Z), colorbar
>> caxis % current color axis limits
ans =
 -6.5466 8.0752
>> caxis([-8 8]), colorbar % a symmetric scheme
>> shading interp
>> colormap pink
>> colormap gray
>> colormap(flipud(gray)) % reverse order
```

By default, the CData of a surface is equal to its ZData. But you can make it different and thereby display more information. One use of this is for functions of a complex variable.

```
>> [T,R] = meshgrid(2*pi*(0:0.02:1),0:0.05:1);
>> [X,Y] = pol2cart(T,R);
>> Z = X + 1i*Y;
>> W = Z.^2;
>> surf(X,Y,abs(W),angle(W)/pi)
>> axis equal, colorbar
>> colormap hsv % ideal for this situation
```


### 5.7 Saving figures

It often happens that a figure needs to be changed long after its creation. You can save the figurecreation commands in a script (section 3.1), but this has drawbacks. If the plot data take a long time to generate, re-running the script will waste time. Also, any edits made through menus and buttons will be lost.

Instead you can save a figure in a format that allows it to be recreated in future sessions. Just enter
>> saveas(gcf,'myfig.fig')
to save the current figure in a file myfig.fig. Later you can enter openfig myfig to recreate it.

### 5.8 Graphics for publication

There are three major issues that come up when you want to include some MATLAB graphics in a document: file format, size and position, and color. It helps to begin by understanding that what you see on the screen is not exactly what you get on paper, because MATLAB tweaks graphs depending on the output device.

The big difference in graphics file formats is between vector (representing the lines in an image) and bitmap (a literal pixel-by-pixel snapshot) graphics. Bitmaps, including GIF, JPEG, PNG, and TIFF, are fine for photographs but for most other scientific applications they are a bad idea. These formats fix the resolution of your image forever, whereas the resolution of your screen, your printer, and a journal's printer are all very different. ${ }^{19}$ Vector formats are usually a much better choice. They include EPS and WMF. The choice here depends somewhat on your platform and word processor.

EPS files (Encapsulated PostScript) are the best choice for documents in LATEX. ${ }^{20}{ }^{21}$ For example, to export the current MATLAB figure to file myfig. eps, use

```
>> saveas(gcf,'myfig.eps')
```

or
>> print -deps myfig
For color output use -depsc in the second position. EPS also works with MS Word, if you print on a postscript printer. In this case it's handy to use

```
>> print -deps -tiff myfig
```

in which case Word will be able to show a crude version of the graph in the document on screen.
A common problem with publishing MATLAB graphs has to do with size. By default, MATLAB figures are rendered at 8 inches by 6 inches on paper. This is great for private use but much too large for most journal papers. It's easy in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ and other word processors to rescale the image to a more reasonable size. However, this reduces everything, including the thickness of lines and the size of text, and the result may be unreadable. Instead you should consider rescaling the graph before exporting it. Here are two versions of an annotated graph. On the left, the figure was saved at default size and then rescaled in $\mathbb{E A T}_{\mathrm{E}} \mathrm{X}$. On the right, the figure was rescaled first.

[^16]


In practice, a compromise between these two would probably be best.
To scale a figure before saving you need to enter

```
>> set(gcf,'paperpos',[0}0003 2.25]
```

where the units are in inches. (Or see the File/Page Setup menu of the figure.) Unfortunately, sometimes the axes or other elements need to be repositioned. To make the display match the paper output, you should enter

```
>> set(gcf,'unit','inch','pos',[0 0 3 2.25])
```

Most journals do not normally accept color figures. Colored lines are automatically converted to black when saved in a non-color format, so you should distinguish them by other features, such as symbol or line style. The colors of surfaces are converted to grayscale, which presents a problem. By default, the colors on a surface range from deep blue to deep red, which in grayscale look similar. You should consider using colormap (gray) or colormap (flipud (gray)), whichever gives less total black, before exporting the figure. Finally, the edges of wireframe surfaces created by mesh are also converted to gray, often with poor results. Make them all the lines black by entering

```
>> set(findobj(gcf,'type','surface'),'edgecolor','k')
```

or by pointing and clicking.
The "File/Export setup..." option on any figure window provides a mechanism for imposing entire sets of changes in figure appearance, including size and color conversion, for different contexts (print, presentation, etc.).

Finally, it's worth remembering that figures can be saved in fig format and recreated later. It's a good idea to save every figure for a paper both as fig and EPS in the same directory.

### 5.9 Exercises

1. Recall the identity

$$
e=\lim _{n \rightarrow \infty} r_{n}, \quad r_{n}=\left(1+\frac{1}{n}\right)^{n} .
$$

Make a standard and a log-log plot of $e-r_{n}$ for $n=5,10,15, \ldots, 500$. What does the log-log plot say about the asymptotic behavior of $e-r_{n}$ ?
2. Here are two different ways of plotting a sawtooth wave. Explain concisely why they behave differently.

```
x = [0:7; 1:8]; y = [zeros(1,8); ones(1,8)];
subplot(121), plot(x,y,'b'), axis equal
subplot(122), plot(x(:),y(:),'b'), axis equal
```

(The first version is more mathematically proper, but the second is more likely to appear in a journal article.)
3. Play the "chaos game." Let $P_{1}, P_{2}$, and $P_{3}$ be the vertices of an equilateral triangle. Start with a point anywhere inside the triangle. At random, pick one of the three vertices and move halfway toward it. Repeat indefinitely. If you plot all the points obtained, a very clear pattern will emerge. (Hint: This is particularly easy to do if you use complex numbers. If $z$ is complex, then plot ( $z$ ) is equivalent to plot (real (z), imag (z)).)
4. Make surface plots of the following functions over the given ranges.
(a) $\left(x^{2}+3 y^{2}\right) e^{-x^{2}-y^{2}},-3 \leq x \leq 3,-3 \leq y \leq 3$
(b) $-3 y /\left(x^{2}+y^{2}+1\right),|x| \leq 2,|y| \leq 4$
(c) $|x|+|y|,|x| \leq 1,|y| \leq 1$
5. Make contour plots of the functions in the previous exercise.
6. Make a contour plot of

$$
f(x, y)=e^{-\left(4 x^{2}+2 y^{2}\right)} \cos (8 x)+e^{-3\left((2 x+1 / 2)^{2}+2 y^{2}\right)}
$$

for $-1.5<x<1.5,-2.5<y<2.5$, showing only the contour at the level $f(x, y)=0.001$. You should see a friendly message.
7. Parametric surfaces are easily done in MATLAB. Plot the surface represented by

$$
x=u(3+\cos (v)) \cos (2 u), \quad y=u(3+\cos (v)) \sin (2 u), \quad z=u \sin (v)-3 u
$$

for $0 \leq u \leq 2 \pi, 0 \leq v \leq 2 \pi$. (Define U and V as a grid over the specified limits, use them to define $X, Y$, and $Z$, and then use $\operatorname{surf}(X, Y, Z)$.)

## 6 Speed, style, and trickery

One often hears the complaint that "MATLAB is too slow." While it's true that even the best MATLAB code may not keep up with good C code, the gap is not always wide. In fact, on core linear algebra routines such as matrix multiplication and linear system solution, there is very little difference in performance. By writing good MATLAB programs-start by profiling your code (section 3.5) to find out where the bottlenecks are-you can often nearly recover the speed of compiled code. ${ }^{22}$

Execution speed isn't the only consideration. MATLAB's real strength is in development speed, and to take full advantage you need to practice a certain style. ${ }^{23}$ In addition, any language creates some quirks that spawn programming tricks that you should know about, and MATLAB is no exception.

### 6.1 Functions or scripts?

Scripts are always interpreted and executed one line at a time. No matter how many times you execute the same script, MATLAB must spend time parsing your syntax. By contrast, functions are effectively compiled into memory when called for the first time (or modified). Subsequent invocations skip the interpretation step.

Most of your programming should be done in functions, which also require you to carefully state your input and output assumptions. Use scripts for drivers or attention-free execution, as described in section 3.1. As a rule of thumb, call scripts only from the command line, and do not call other scripts from within a script.

### 6.2 Memory preallocation

MATLAB hides the tedious process of allocating memory for variables. This generosity can cause you to waste a lot of runtime, though. Consider an implementation of Euler's method for the vector differential equation $y^{\prime}=A y$ in which we keep the value at every time step:

```
A = rand(100);
y = ones(100,1);
dt = 0.001;
for n = 1:(1/dt)
 y(:,n+1) = y(:,n) + dt*A*y(:,n);
end
```

[^17]This takes about 7.3 seconds on a certain computer. Almost all of this time, though, is spent on a noncomputational task.

When MATLAB encounters the statement $y=$ ones $(100,1)$ representing the initial condition, it asks the operating system for a block of memory to hold 100 numbers. On the first execution of the loop, it becomes clear that we actually need space to hold 200 numbers, so a new block of this size is requested. On the next iteration, this also becomes obsolete, and more memory is allocated. The little program above requires 1001 memory allocations of increasing size, and this task occupies most of the execution time. Also, the obsoleted space affects your other software, because (at least in UNIX-like environments) MATLAB can't give memory back to the operating system until it exits.

Changing the second line to $\mathrm{y}=$ ones $(100,1001)$; changes none of the mathematics but does all the required memory allocation at once. This is called preallocation. With preallocation the program takes about 0.4 seconds on the same computer as before.

### 6.3 Vectorization

Vectorization refers to the removal of loops (for and while). As an example, suppose $x$ is a column vector and you want to compute a matrix $D$ such that $d_{i j}=x_{i}-x_{j}$. The standard implementation would involve two nested loops:

```
n = length(x);
D = zeros(n); % preallocation
for j = 1:n
 for i = 1:n
 D(i,j) = x(i) - x(j);
 end
end
```

The loops could be written in either order here. But the innermost loop is easily replaced by a vector operation.

```
n = length(x);
D = zeros(n); % preallocation
for j = 1:n
 D(:,j) = x - x(j);
end
```

We can get rid of the remaining loop, too, by upgrading from vectors to two-dimensional arrays. This is a bit more subtle.

```
n = length(x);
X = x(:,ones(n,1)); % copy columns to make n by n
D = X - X.';
```

The second line here is a trick that was introduced in section 2.2 (and in MATLAB circles is called "Tony's trick"). Note too the use of .' in the last line to be compatible with a complex input.

At this point you might ask, why vectorize? There are two answers: speed and style. Neither is a simple issue. Until around 2002, careful vectorization always yielded tremendous improvements in execution speed-often orders of magnitude. But this is changing due a technique called JIT acceleration. Acceleration, which is applied automatically, can remove the speed penalty that MATLAB traditionally experiences with loops. At this writing, not every loop can be optimized, but it's clear that code vectorization is no longer speed-critical in every case. For example, with $n=200$ the the times in milliseconds for each of the three methods above were 1.73, 0.97, and 2.80 , respectively. In this case a medium level of vectorization proved fastest. (Observe also that the first two versions, unlike the third, are easily adjusted to account for the obvious antisymmetry in the result.)

Style is a subjective matter, of course. To get a better idea of the trade-offs involved, consider the classic example of Gaussian elimination. Here is a basic implementation without any vectorization.

```
n = length(A);
for k = 1:n-1
 for i = k+1:n
 s = A(i,k)/A (k,k);
 for j = k:n
 A(i,j) = A(i,j) - s*A(k,j);
 end
 end
end
```

Again we start vectorization with the innermost loop, on j. Each iteration of this loop is independent of all the others. This parallelism is a big hint that we can use a vector operation:

```
n = length(A);
for k = 1:n-1
 for i = k+1:n
 s = A(i,k)/A (k,k);
 cols = k:n;
 A(i,cols) = A(i,cols) - s*A(k,cols);
 end
end
```

This version is actually makes the linear algebra idea of a row operation much more apparent and, in my view, is clearly preferable. However, the innermost of the remaining loops is also vectorizable.

```
n = length(A);
for k = 1:n-1
```

```
 rows = k+1:n;
 cols = k:n;
 s = A(rows,k)/A(k,k);
 A(rows,cols) = A(rows,cols) - s*A(k,cols);
end
```

You have to flex your linear algebra muscles a bit to see that the vector outer product in the next-to-last line is appropriate. This is an interesting insight, but does not lead to an unquestionable improvement in style.

To compare the speed of these three versions, they were run 20 times each for six different values of the matrix size $n$ on a 2.5 GHz Linux machine in MATLAB 7.0.1. The results, per factorization in milliseconds:

|  | $n=50$ | 100 | 150 | 200 | 250 | 300 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Three loops | 1.5 | 14.5 | 41 | 108.5 | 231 | 419.5 |
| Two loops | 17.5 | 99.5 | 258.5 | 521 | 918 | 1465 |
| One loop | 3 | 12 | 76.5 | 197.5 | 439.5 | 672 |

The version that works naturally at the vector level is now by far the slowest. Besides pointing out the pitfalls of vectorization, this experiment illustrates the limitations of comparing algorithms by counting their floating-point operations. In the two-loop version the growth in time is less than the asymptotically expected $O\left(n^{3}\right)$, indicating that non-arithmetic operations are playing a major role.

An uncontroversial application of vectorization is the use of array operators in the evaluation of a mathematical expression such as $t \sin \left(t^{2}\right)$ at many values of $t$. It's hard to deny that $t .{ }^{*} \sin \left(t .^{\wedge} 2\right)$ is plainer and shorter than an equivalent loop. Similarly, once you understand the cumsum function for cumulative summation, computing partial sums of a geometric series by

```
s = cumsum((1/3).^ (0:100));
```

is a little shorter and more transparent than the equivalent loop, which also requires a preallocation (section 6.2):

```
s = ones(1,101);
for j = 1:100,
 s(j+1) = s(j) + (1/3)^j;
end
```

Functions like sum and diff listed in Table 5 can make code more readable in some cases.
The bottom line: Loops should not be written casually. Writing code that works at a vector level is easy and natural in most cases. But if profiling indicates that a lot of time is being spent in a place where the level of vectorization is selectable, experimentation may be the only way to see what level is best. In the future, MATLAB may become even more forgiving when it comes to loops.

### 6.4 Masking

An advanced type of vectorization is called masking. Let's say that we have a vector x of values at which we want to evaluate the piecewise-defined function

$$
f(x)= \begin{cases}1+\cos (2 \pi x), & |x| \leq \frac{1}{2} \\ 0, & |x|>\frac{1}{2}\end{cases}
$$

Here is the standard loop method:

```
f = zeros(size(x));
for j = 1:length(x)
 if abs(x(j)) <= 0.5
 f(j) = 1 + cos(2*pi*x(j));
 end
end
```

The shorter way is to use a mask.

```
f = zeros(size(x));
mask = (abs(x) < 0.5);
f(mask) = 1 + cos(2*pi*x(mask));
```

The mask is a logical index into $x$ (see page 12). You could refer, if needed, to the unmasked points by using ~mask.

Consider a new version of the sum-of-primes idea from page 26. Here's how we could count the number of primes less than 100 and add them up:

```
isprm = isprime(1:100);
sum(isprm)
sum(find(isprm))
```

Here find converts a logical index into an absolute one. The only disadvantage of doing so in general is that referring to the unmasked elements becomes more difficult.

Generally, when a graphical function encounters a NaN value, it quietly omits drawing that point. This can be useful when combined with masking. For example, the commands

```
L = membrane(1, 18, 8, 8);
surf(L)
```

plots a surface defined over an L-shaped region. The part outside the L is flat at zero, which works OK since the function goes to zero at the boundary. But it looks better if we erase that part of the surface using a mask:

```
[X,Y] = meshgrid(0:36);
outside = (x < 18) & (y > 18); % logical mask
L(outside) = NaN;
surf(X,Y,L)
```


### 6.5 Scoping exceptions

Once in a while the scoping rules for functions get in the way. Although you can almost always do what you need within the rules, it's nice to know how to bend them.

The least useful and most potentially troublesome violation of scoping comes from global variables. Any function (or the user at the command line) can declares a variable to be global before assigning it a value. Then any other workspace may also declare it global and see or change its value. At one time global values were more or less necessary in MATLAB, but that is no longer the case. They should not be used, for example, to pass extra parameters into "function functions." As described in section 4.3, there are better and more stable means of doing so. The primary problem with global variables is that it becomes possible to have conflicting names, or to lose track of what functions may modify a value. Input and output parameters make this information much more apparent.

A more interesting type of variable is called persistent. One use of persistent variables is to compute some preliminary data that needs to be used on subsequent calls. Although the data could be returned to the caller and passed back in to the function, that is inconvenient when such data are meaningless to the caller. Consider this example for the Fibonacci numbers.

```
function y = fib(n)
persistent f
if length(f) < 2
 f = [1 1];
end
for k = length(f)+1:n
 f(k) = f(k-2) + f(k-1);
end
y = f(1:n);
```

The first time this function is called, $£$ will be empty. ${ }^{24}$ Immediately $f$ will then be given the first two values in the sequence. (The first invocation is the only one in which the conditional of line 5 will be true.) Then, f is extended as needed to get the first n values. So far this is nothing unusual, if it is a bit indirect. But upon exit of the function, the persistent $f$ is not destroyed. Thus future calls will begin with an $f$ that has as many entries as the largest $n$ encountered in all calls. The same effect could be achieved with a global variable, but a persistent variable is accessible only to the function that created it. In fact, different functions can use the same name for a persistent variable without interference.

[^18]
### 6.6 Exercises

1. Rewrite trap or simp (page 34) so that it does not use any loops. (Hint: Set up a vector of all $x$ values and evaluate f for it. Then set up a vector of quadrature weights and use an inner product.)
2. Explore the issue of whether the order of the loops affects the execution time of either of the first two versions of the vector differencing code given on page 46.
3. Suppose $x$ is a column vector. Compute, without using loops or conditionals, the matrix $A$ given by

$$
a_{i j}= \begin{cases}\frac{1}{\left(x_{i}-x_{j}\right)^{2}}, & \text { if } i \neq j, \\ 1, & \text { otherwise } .\end{cases}
$$

(One way to do this is by direct assignment of the diagonal elements of $A$. This is impossible without a loop using row and column indices, but easy using the single-index linear addressing model.)
4. Reconsider the function chebeval (page 28) that evaluates Chebyshev polynomials at multiple points. Write the function so that it performs as efficiently as you can make it. Among other things, you have to choose whether to use the definition or the recursion.
5. Consider "shuffling" a vector of integers from 1 to 52 using a physical interpretation of a card shuffle. Divide the cards into two equal stacks, and merge the stacks together such that each time a pair of cards is to fall off the "bottom" of each stack, a random decision is made as to which falls first. A loop-based implementation would be

```
function s = shuffle(x)
n = length(x)/2;
s = [];
for i = 1:n
 if rand(1) > 0.5
 s = [s x([2*i-1 2*i])];
 else
 s = [s x([2*i 2*i-1])];
 end
end
```

Rewrite this function without loops. (This can be done in as little as four statements using resizing tricks.) It can be interesting to start with a perfectly ordered deck and see how many shuffles it takes to "randomize" it. One crude measure of randomness is the $(1,2)$ element of corrcoef $(1: 52, v)$, which is expected to be zero if $v$ is random.
6. Rewrite the function entropy on page 28 without any loops using sort, diff, find, and (perhaps) sum.
7. In the function newt on (page 34), suppose that input $x 0$ is actually a vector of initial guesses, and you want to run Newton's method on each. Keep track of an error vector and use masking to rewrite newt on so that it still uses only one loop.
8. Rewrite expss from page 28 so that it works on a vector input and as fast as possible. (You should consider, for example, whether making use of persistent variables might help.)
9. Different Fibonacci sequences can be produced by changing the first two members of the sequence. Rewrite fib from page 50 so that it accepts these seed values and recomputes the sequence only when necessary.

## 7 Advanced data structures

Not long ago, MATLAB viewed every variable as a matrix or array. While this point of view is ideal for simplicity, it is too limited for some tasks. A few additional data types are provided.

### 7.1 Strings

As we have seen, a string in MATLAB is enclosed in single forward quotes. In fact a string is really just a row vector of character codes. Because of this, strings can be concatenated using matrix concatenation.

```
>> str = 'Hello world';
>> str(1:5)
ans =
Hello
>> double(str)
ans =
 72 101 108 108 111
>> char(ans)
ans =
Hello world
>> ['Hello',' ','world']
ans =
Hello world
```

You can convert a string such as '3.14' into its numerical meaning (not its character codes) by using eval or str2num on it. Conversely, you can convert a number to string representation using num2str or the much more powerful sprintf (see below). If you want a quote character within a string, use two quotes, as in 'It''s Cleve''s fault'.

Multiple strings can be stored as rows in an array using str2mat, which pads strings with blanks so that they all have the same length. However, a better way to collect strings is to use cell arrays (section 7.2).

There are lots of string handling functions. See the help on strfun. Here are a few:

```
>> upper(str)
ans =
HELLO WORLD
>> strcmp(str,'Hello world')
ans=
 1
>> findstr('world',str)
ans =
 7
```


## Formatted output

For the best control over conversion of numbers to strings, use sprintf or fprintf. These are closely based on the C function printf, with the important vectorization enhancement that format specifiers are "recycled" through all the elements of a vector or matrix (in the usual row-first order).

For example, here's a script that prints out successive Taylor approximations for $e^{1 / 4}$.

```
x=0.25; n=1:6; c=1./cumprod([1 n]);
for k=1:7, T(k)=polyval(c(k:-1:1),x); end
fprintf('\n T_n(x) |T_n(x)-exp(x)| \n');
fprintf('---}\mp@subsup{n}{}{\prime})
fprintf('%15.12f %8.3e\n', [T;abs(T-exp(x))])
 T_n(x) |T_n(x) - exp (x)|

 1.250000000000 3.403e-02
 1.281250000000 2.775e-03
 1.283854166667 1.713e-04
 1.284016927083 8.490e-06
 1.284025065104 3.516e-07
 1.284025404188 1.250e-08
```

Use sprintf if you want to save the result as a string rather than have it output immediately.

### 7.2 Cell arrays

Collecting objects of different sizes is a common chore. For instance, suppose you want to tabulate the Chebyshev polynomials $1, x, 2 x^{2}-1,4 x^{3}-3 x$, and so on. In MATLAB one expresses a polynomial as a vector (highest degree first) of its coefficients. The number of coefficients needed grows with the degree of the polynomial. Although you can put all the Chebyshev coefficients into a triangular array, this is an inconvenient complication.

Cell arrays are used to gather dissimilar objects into one variable. They are indexed like regular numeric arrays, but their elements can be absolutely anything. A cell array is created or referenced using curly braces $\}$ rather than parentheses.

```
>> str = { 'Goodbye', 'cruel', 'world' }
str =
 'Goodbye' 'cruel' 'world'
>> str{2}
ans =
cruel
>> T = cell(1,9);
>> T(1:2) = { [1], [1 0] };
>> for n = 2:8, T{n+1} = [2*T{n} 0] - [0 0 T{n-1}]; end
>> T
T =
 Columns 1 through 5
 [1] [1x2 double] [1x3 double] [1x4 double] [1x5 double]
 Columns 6 through 9
 [1x6 double] [1x7 double] [1x8 double] [1x9 double]
>> T{4}
ans =
 4 0 -3 0
```

Cell arrays can have any size and dimension, and their elements do not need to be of the same size or type. Cell arrays may even be nested. Because of their generality, cell arrays are mostly just containers; they do not support any sort of arithmetic.

One special cell syntax is quite useful. The idiom $C\{:\}$ for cell array $C$ is interpreted as a
comma-separated list of the elements of $C$, just as if they had been typed. For example,

```
>> str2mat(str{:}) % same as str2mat('Goodbye','cruel','world')
ans =
Goodbye
cruel
world
```

The special cell array varargin is used to pass optional arguments into functions. For example, reconsider the function interpquad on page 33 for integrating an interpolant. The built-in interp1 used there to perform the interpolation accepts an optional input parameter to select the type of interpolant used. We can update interpquad to produce exactly the same behavior, as follows:

```
function I = interpquad(x,y,varargin)
I = quad(@interpolant,x(1),x(end));
 function f = interpolant(t)
 f = interp1(x,y,t,varargin{:});
 end % interpolant()
end % interpquad()
```

The nested function has access to varargin. The syntax varargin $\{:\}$ puts all input arguments after the first two into each call to interp1. Thus, for example,

```
>> x=pi*sort(rand(100,1));
>> interpquad(x,sin(x)) % default choice
ans =
 1.9987
>> interpquad(x,sin(x),'linear')
ans =
 1.9987
>> interpquad(x,sin(x),'pchip')
ans =
 1.9994
```

Note how an empty varargin is valid too and gives the default interp1 behavior (linear).

### 7.3 Structures

Structures are much like cell arrays, but they are indexed by names rather than by numbers.

Say you are keeping track of the grades of students in a class. You might start by creating a student struct (structure) as follows:

```
>> student.name = 'Moe';
>> student.SSN = 123456789;
>> student.homework = [10 10 7 9 10];
>> student.exam = [98 94];
>> student
student =
 name: 'Moe'
 SSN: 123456789
 homework: [10 10 7 9 10]
 exam: [98 94]
```

The name of the structure is student. Data is stored in the structure according to named fields, which are accessed using the dot notation above. The field values can be anything.

Probably you have more students.

```
>> student(2).name = 'Curly';
>> student(2).SSN = 987654321;
>> student(2).homework = [\begin{array}{lllll}{4}&{6}&{7}&{3}&{0}\end{array}];
>> student(2).exam = [53 66];
>> student
student =
1x2 struct array with fields:
 name
 SSN
 homework
 exam
```

Now you have an array of structures. This array can have any size and dimension. However, all elements of the array must have the same fields.

Struct arrays make it easy to extract data into cells:

```
>> [roster{1:2}] = deal(student.name)
roster =
 'Moe' 'Curly'
```

In fact, deal is a very handy function for converting between cells and structs. See online help for many examples.

## 8 Scientific computing

Certain computational problems appear repeatedly in applications motivated by science and engineering. Naturally, MATLAB is thoroughly equipped for such problems. In this section are reviews of some of these methods from a "recipe" point of view. Deeper mathematical understanding, which is vital when things do not work out according to plan, can be found in texts and papers on numerical analysis.

### 8.1 Linear algebra

The most common tasks in numerical linear algebra are solving linear systems $A x=b$ or overdetermined least-squares systems $A x \approx b$, and finding factorizations such as the eigenvalue or singular value decompositions. The greatest dichotomy in methods for these problems is full versus sparse matrices. (For least-squares problems, however, sparse situations seem to be relatively rare and less supported.) See section 2.5 for more on sparse matrices.

For square or rectangular linear systems the method of first resort is the backslash operator. The solution to either $A x=b$ or $A x \approx b$ is implemented in MATLAB as $x=A \backslash b$. For square matrices, in fact, the idiom $\mathrm{A} \backslash$ is mathematically equivalent and computationally preferred to leftmultiplication by $A^{-1} .{ }^{25}$ The backslash does not apply a single algorithm but rather represents an expert system that applies the best of several methods depending on detectable properties of $A$ (such as sparsity, triangularity, and positive definiteness). These are spelled out in the documentation page for mldivide. One consequence is that you must set up $A$ properly to get the fastest solution-for instance, if $A$ is tridiagonal, you should create it as or convert it to sparse format to get an $O(n)$ solution time.

If you need to solve multiple systems $A x_{i}=b_{i}$, for $i=1, \ldots, k$, you can use the identity

$$
\left[\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{k}
\end{array}\right]=\left[\begin{array}{llll}
A x_{1} & A x_{2} & \cdots & A x_{k}
\end{array}\right]=A\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{k}
\end{array}\right]
$$

In MATLAB terms one lets $B$ be the matrix whose columns are $b_{1}, \ldots, b_{k}$, and then $\mathrm{X}=\mathrm{A} \backslash \mathrm{B}$ has the solutions $x_{1}, \ldots, x_{k}$ as its columns. But if the right-hand side vectors $b_{i}$ are not all known at once (e. g., they are produced by an iteration), then backslash is much less useful, because it has to repeat costly work each time. In this case you have to do the key factorization step yourself if you want efficiency. For instance, the so-called inverse iteration for an eigenvector of $A$ could look like

```
[L,U] = lu(A);
v = randn(length(A),1); v = v/v(1);
for k = 1:50
 v = U \ (L\v);
 v = v/v(1);
end
```

[^19]Note that $U \backslash(L \backslash v)$ is equivalent to $U^{-1}\left(L^{-1} v\right)=(L U)^{-1} v=A^{-1} v$. This version is fine for a generic $A$ but less than ideal if $A$ has one of the special properties detected by the backslash. At this point one really needs to know some numerical linear algebra to make further improvements.

Eigenvalue and singular value decompositions can be found using eig and svd, respectively. Both functions have two output formats:

```
lambda = eig(A); sigma = svd(A);
[V,D] = eig(A); [U,S,V] = svd(A);
```

The top line returns just a vector of eigenvalues or singular values; the bottom line returns the full decomposition. The value-only forms can be substantially faster than the full versions.

### 8.2 Iterative linear algebra

The methods of section 8.1 are appropriate for matrices of size in the several thousands for linear systems or perhaps about a thousand for the decompositions. For truly large problems these direct methods, which give answers at the end of a finite number of operations ${ }^{26}$, are less useful than iterative methods, which produce sequences of improving estimates. Iterative methods also do not factor or modify the given matrix, which is ideal for sparse problems.

For linear systems there are many choices of iterative methods (see the help for sparfun). All of these tend to be much better than classical methods such as Gauss-Seidel or SOR. If the system matrix is positive definite, the usual choice is the conjugate gradient method, implemented by pcg. For more general matrices, bicgstab and gmres tend to be quite popular, but there is no "best" method. In practice the choice of method is often less critical than the choice of a preconditioner, which is a matrix $M$ that is somehow "close to" $A$ yet allows very fast solutions of $M x=b$.

For the decompositions the choices are simpler: eigs for eigenvalues and sigs for singular values. Both are much preferred to the power iteration and related classical methods. Usually one does not seek the full decomposition (which might be impractical even to store), but a few of the largest or smallest values and perhaps their associated vectors.

All of these iterative methods have a surprising additional flexibility: they don't require matrices! They can instead be given a function that returns the vector $A u$ for any given vector $u$. This is more useful than it may sound, for example in applications where one can use multipole or other "fast" approximate methods for the matrix-times-vector operation.

[^20]
### 8.3 Rootfinding

One of the oldest and most common numerical problems is trying to find a root or zero of a scalar function $f(x)$ of one variable. (This is equivalent to solving $f(x)=c$ for any constant $c$, since in that case we can find a root of the function $f(x)-c$.) Usually one learns Newton's method for this problem, but it turns out not to be the best general-purpose method because it needs an explicit derivative calculation and has erratic convergence. The MATLAB function fzero is much better than a handwritten algorithm for most problems. It can use a starting point or (much better) a starting interval containing a root, and requires a function only to compute $f(x)$, not $f^{\prime}(x)$.

Roots of polynomials are handled differently using roots. You should be aware that polynomial roots can be very sensitive to perturbations in the coefficients, so interpret the results with some caution.

For solving multidimensional systems of nonlinear equations $F(x)=0$, MATLAB offers $£$ solve in the Optimization Toolbox. You only need to supply a function for computing $F$ and a starting point, but you might greatly improve the convergence if you also supply a function computing the Jacobian matrix of $F$, or at least giving the sparsity pattern of the Jacobian. There are several algorithms to choose from, so read the documentation if you have trouble on a problem. All of the methods expect $F$ to be reasonably smooth.

### 8.4 Optimization

To find the minimum of a scalar function $f(x)$ of one variable, use fminbnd. It requires a function computing $f$ and an interval on which to optimize. (To maximize $f(x)$, you minimize $-f(x)$.)

For minimization with multiple variables there are two main choices: fminunc (in the Optimization Toolbox) and fminsearch. For smooth functions fminunc is usually faster, but fminsearch does not use any derivative information and may be better for nonsmooth problems. In the special case of nonlinear least squares,

$$
f(x)=f_{1}(x)^{2}+f_{2}(x)^{2}+\cdots f_{m}(x)^{2}
$$

one should use lsqnonlin instead of either of these. (In fact, this is one of the methods fsolve uses for solving systems.)

Optimization in engineering often comes with side constraints on the variables. None of the multidimensional methods named here respects such constraints. See the Optimization Toolbox for methods for several variants of these problems.

### 8.5 Fitting data

A common task is to make sense of data from noisy observations of a presumably simple relationship. Here "noise" can refer to experimental error or uncertainty, or neglected higher-order
effects. In data fitting one posits a form for the underlying relationship involving some unknown parameters, then uses the data to find the best parameters. This leads to an optimization.

When the form of the relationship is a linear combination of basis functions and the parameters are the coefficients, the resulting optimization is a linear least-squares problem and can be solved using the backslash. For example,

```
t = (1:100)'; y = 4 + 0.1*cos(t) - 0.2*sin(t);
y = y + 0.1*randn(100,1);
A = [ones(100,1) cos(t) sin(t)];
A\y
ans =
 4.0048
 0.0938
 -0.1951
```

When the functional form is a polynomial, the entire process is automated by polyfit. Also, a graphical data fitting tool for many linear fits is available from the Tools menu of every figure window.

If the coefficients appear nonlinearly, a nonlinear optimization results. For instance, MATLAB ships with U. S. census data for the national population every ten years since 1790 . To fit these data with an exponential curve of the form $c_{1}+c_{2} e^{c_{3} t}$, we could proceed as follows:

```
load census
t = (cdate-1790)/10;
residual = @(param) sum((param(1) + param(2)*exp(param(3)*t) - pop).^2);
fminsearch(residual,[1 1 1])
ans =
 -39.1124 35.8209 0.1053
```

You can check graphically that this is a pretty good fit. (Note that if we set $c_{1}=0$ in this example, then by taking logs we get a fit to a linear function.)

### 8.6 Quadrature

Numerical approximation of definite integrals is called quadrature in one dimension and cubature if the integral is over multiple dimensions. The basic use of quad for quadrature was shown in section 4.3. An alternative quadl may be faster for high accuracy with smooth integrands. MATLAB offers dblquad for cubature over rectangular domains. More general domains can be implemented literally using iterated integration.

In truth, MATLAB's integration offerings fall a bit short in accuracy, reliability, generality, and speed. If you need to do anything beyond some basic one-dimensional integrands, you might do well to look up CUBPACK or QUADPACK on the web.

### 8.7 Initial-value problems

MATLAB has an excellent library of solvers for the initial value problem (IVP) $x^{\prime}(t)=f(t, x(t))$, $x(a)=x_{0}$, where $x$ and $f$ are understood to be vectors. Any higher-order differential equation must first be written in first-order form. The primary division between IVP solvers is stiff versus nonstiff. Loosely speaking, stiff problems have simultaneous phenomena over very different time scales, and they require methods that are much more expensive for each time step taken, especially in the face of high-dimensional nonlinearity. The logical extreme of stiffness is the differentialalgebraic equation, which has side constraints on the variables in addition to the dynamics.

Basic ODE solution takes the form
output = odexxx( odefunc, time, init, options )

Here the odefunc is a function accepting scalar $t$ and vector $x$, returning the vector $f(t, x)$; time is a vector of two or more times spanning the time interval of solution; init is the initial condition $x_{0}$; options controls aspects of the solution behavior, including error tolerances, and is created using odeset; and the solver's name is one of ode45, ode113, ode15s, or the other solvers listed in the documentation.

There are two forms for the output. If two names [ $t, y$ ] are given, then $t$ is a vector of times and each row of y is the solution vector at one of those times. If the time input is a vector of length greater than two, then $t$ is identical to it; otherwise, $t$ is the vector of time steps that were chosen automatically. ${ }^{27}$ The other form of output is to give a single variable soln, which can be used in deval to evaluate the solution at any desired time values.

For example, consider the well-known predator-prey model

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=x_{1}-\alpha x_{1} x_{2} \\
& \frac{d x_{2}}{d t}=\beta x_{1} x_{2}-x_{2}
\end{aligned}
$$

This can be solved by

```
f = @(t,x) [x(1)-0.2*x(1)*x(2); 0.5*x(1)*x(2) - x(2)];
[t,x] = ode45(f, 0:0.05:20, [8;1]);
subplot(2,1,1), plot(t,x)
subplot(2,1,2), plot(x(:,1),x(:,2))
```

The IVP solvers offer lots of customization and additional features. Investigate online help if you are doing any more than the basics.

[^21]
### 8.8 Boundary-value problems

A boundary-value problem also starts with a first-order ordinary differential equation, $y^{\prime}(x)=$ $f(x, y)$, for $a \leq x \leq b$, but unlike an initial-value problem, it has side conditions involving two points: $g(y(a), y(b))=0$. Existence and uniqueness theory is much less general than for IVPs, and the numerical solution process is less straightforward. Here we just give a simple case study, the Allen-Cahn equation

$$
\epsilon y^{\prime \prime}+y\left(1-y^{2}\right)=0, \quad 0 \leq x \leq 1, \quad y(0)=-1, \quad y(1)=1 .
$$

Both $y \equiv-1$ and $y \equiv 1$ are constant solutions, and this equation models a "phase change" between them. If $\epsilon$ is small, this change is abrupt.

Three elements are needed to attempt a numerical solution: a function for the ODE, a function for the boundary conditions, and an initial guess to the solution. Although in general this is probably best done in an M-file, here we use anonymous functions. The ODE must be cast in first order form by introducing $y_{1}=y, y_{2}=y^{\prime}$ :
$\mathrm{f}=@(\mathrm{x}, \mathrm{y}) \quad\left[\mathrm{y}(2) ;\left(\mathrm{y}(1)^{\wedge} 3-\mathrm{y}(1)\right) / 0.01\right]$;
Here we set $\epsilon=0.01$. Next, we create a function that should return all zeros when the boundary conditions are satisfied:
$\mathrm{g}=$ @(ya,yb) [ ya(1)+1; yb(1)-1 ];
Finally, we must create an initial guess to the solution using bvpinit. We choose a linear interpolation on equally spaced nodes between the boundary values.

```
x = linspace(0,1,10)';
y0 = @(x) [-1+2*x; 2];
ACinit = bvpinit(x,y0);
```

The initial guess may be crucial to obtaining a solution in difficult problems. Finally, we call bvp 4 c to create the solution and use deval to evaluate it for a plot:

```
soln = bvp4c(f,g,ACinit);
xp=0:0.05:1; plot(xp,deval(soln,xp,1))
```

(The third argument to deval asks for just the first component of the solution, the original variable y.) If you inspect the output soln, you will see that it is a structure, and that the original 10 nodes in $x$ have been replaced by 35 unequally spaced ones.

If we attempt the same process with $\epsilon=10^{-3}$, the solver appears to hang. The problem is that the linear initial guess does not give a sufficient clue about the shape of the solution. In this case one gets better results by using the solution with $\epsilon=10^{-2}$ as the initial guess, a crude form of a process known as continuation. The syntax of bvp4c makes this easy.

```
soln = bvp4c(f,g,soln)
ans =
 x: [1x63 double]
 y: [2x63 double]
 yp: [2x63 double]
 solver: 'bvp4c'
```

Now we see that 63 nodes are being used, and a plot confirms that the transition region near $x=1 / 2$ is much steeper.

### 8.9 Initial-boundary value problems

An initial-boundary value problem is a time-dependent partial differential equation with side conditions at an initial time and on geometric boundaries. While MATLAB does have an automatic facility for certain PDEs with one space and one time dimension (pdepe), here we study a semiautomated process known as semidiscretization or the method of lines. In the method of lines ones discretizes space first and then time independently. At a practical level this means the original PDE is replaced by a (typically large) system of ordinary differential equations. In principle, and often in practice too, one can solve the ODE system using the IVP solvers from section 8.7.

For example, consider the problem

$$
u_{t}=u_{x x}+u^{2}, \quad 0 \leq x \leq 1, \quad u(t, 0)=u(t, 1)=0 .
$$

This problem mixes blowup in finite time (via $u_{t}=u^{2}$ ) with diffusion. If the initial condition is large enough, blowup wins. If we use a simple second-order finite difference for the $u_{x x}$ term, this problem can be attacked using the remarkably simple script

```
N = 100; h = 1/N;
x = h*(1:N-1)';
D = sparse(toeplitz([-2 1 zeros(1,N-3)]/h^2));
f = @(t,u) D*u + u.^2;
u0 = 30*sin(pi*x);
[t,u] = ode113(f,[0.1],u0);
```

Upon execution one receives the message

```
Warning: Failure at t=4.561109e-02. Unable to meet integration
tolerances without reducing the step size below the smallest value
allowed (2.220446e-16) at time t.
```

This is an indication of the finite-time blowup. By increasing $N$ or using more accurate finite differences, one could quickly determine that at least two digits of the blowup time have apparently been found accurately.

## 9 Graphical user interfaces

Note: The code here still works, but nested functions have dramatically changed what is considered good GUI style.

Most of us rely on graphical user interfaces (GUI) at least part of the time. They are especially useful to nonexpert users. Adding a GUI to a software package is not too hard in MATLAB, once you have acquired the skill. Although GUI programming is not inherently stimulating, a welldesigned GUI is appreciated by others and makes your work more significant.

By the way, the principles of GUI programming are pretty universal, so learning them in MATLAB is good training for writing GUIs in other environments, such as Java.

### 9.1 GUI programming style

Scientific programs are usually written in a procedural style: You give a list of instructions, tell the computer to start execution at the beginning, and wait for the computer to finish the instructions.

This model doesn't hold up for GUI programming. A GUI creates buttons, menus, and other objects (collectively called widgets) and then waits for the user to do something. When an action is taken, the GUI may be expected to respond in some way, then resume waiting. This is eventdriven programming, and it requires a different style that at first may seem cumbersome.

Each widget has a state and perhaps a callback function. The state of a widget includes its label, position, and current value. The callback is a function that is executed in the base workspace each time the widget is selected or has its value changed. In MATLAB there can also be callback functions for certain other events, such as pressing keys, moving the mouse in the figure window, or resizing the figure window.

Most GUIs, for example, have a "quit" button that, when pressed, might ask for confirmation and then destroy the window that the GUI is in. Here is a sketch of this behavior in MATLAB:

```
uicontrol('style','pushbutton','label','Quit','callback',@GUIQuit)
% later on in the file...
function GUIQuit
a = questdlg('Really quit?','Confirm quit','Yes','No','No');
if strcmp(a,'Yes')
 delete(gcbf)
end
```

Remember that @GUIQuit is a function handle in MATLAB. The built-in questdlg opens a window with a question and gets an answer from the user. The function gbcf stands for "get callback figure," i.e., the handle of the figure that the button is in.

In addition to creating the widgets and filling in the appropriate callback actions, GUI programs usually need a mechanism for holding "global" data. For instance, some widgets may hold settings that affect the actions of the callbacks, so their handles should be public knowledge.

### 9.2 Using guide for layout

Laying out the physical appearance of the GUI is the first and easiest step. Before using the computer, you should invest some time with paper or chalkboard deciding what elements should be in your GUI and what they will do. GUIs tend to be more globally coupled than other types of programs, so making changes later on can take a fair amount of work.

Once you are ready, type guide to get a GUI for making GUIs. Using guide you can add widgets and axes to a figure and make it all look the way you want. Double-click on a widget to edit its properties. Always important are the String, which is usually the label of the widget, ${ }^{28}$ and the Tag, which is an internal designation. It is usually wise to give the tags some consistency. For instance, a slider that controls a quantity $\beta$ would be BetaSlider, the quit button would be QuitButton, etc. Leave the Callback property set to "automatic," unless you are sure you can delete it.

After the GUI looks OK and all widgets have the correct properties, ask guide to "activate" the figure. This will create a fig file (section 5.7) that records the layout of the GUI, and an M-file (section 3) with the skeleton of the function that will implement the GUI.

### 9.3 Creating callbacks

The skeleton created by guide has a short main section followed by empty "stubs" for callback functions. You are expected to edit the skeleton in order to make the callbacks work as intended.

The main section of the GUI M-file takes one of two possible actions:

- If the GUI M-file is called with no input arguments (as when it is typed at the command line), then the GUI is launched, either by loading the fig file or by bringing forward a preexisting GUI window.
- Otherwise, the input arguments represent a callback invocation, and the main section passes control to the correct callback subfunction. This is called a switchyard programming model.

The standard callback assigned to a GUI widget involves the Tag property of the widget. For example, the callback for a button with the Tag quitButton in a GUI figure named mygui will have callback
mygui('QuitButton_Callback', gcbo, [], guidata(gcbo))

[^22]The argument gcbo ("get callback object") gives the handle of the widget whose callback is executing. The second argument is always empty in MATLAB 6.0 but in the future may contain information about the event that caused the callback invocation.

The function guidata provides the standard mechanism for storing global data in a GUI. There are two ways to call it:

```
data = guidata(h);
guidata(h,data)
```

The first call retrieves dat a and the second stores it.In both cases, h is the handle of the GUI figure or any object in it. By default when using guide, data is a structure (section 7.3) whose fields are the Tag names of GUI widgets and whose values are the handles of those widgets. Thus you at least have access to all the tagged widgets in the GUI. But data is an ordinary structure, so you can add fields holding whatever objects you like. Just remember to store dat a again after making any changes to it.

### 9.4 An example

Here is a function that creates a simple GUI, for a "Monte Carlo" estimate of $\pi$. It has a slider called NumberSlider that sets the number of samples, a ComputeButton that causes the estimate to be computed, and two other buttons that create different plots of the data. Don't be too concerned with the gritty details of each callback - just try to see the overall structure, and how the global data are passed around.

```
function varargout = montecarlo(varargin)
if nargin == 0 % LAUNCH GUI
 fig = openfig(mfilename,'reuse');
 set(fig,'Color', get(0,'defaultUicontrolBackgroundColor'));
 handles = guihandles(fig);
 guidata(fig, handles);
 NumberSlider_Callback(handles.NumberSlider,[],handles);
 if nargout > 0
 varargout1 = fig;
 end
elseif ischar(varargin1) % INVOKE NAMED SUBFUNCTION OR CALLBACK
 try
 [varargout1:nargout] = feval(varargin:); % FEVAL switchyard
 catch
 disp(lasterr);
 end
```


## 9 GRAPHICAL USER INTERFACES

```
end
function varargout = NumberSlider_Callback(h, eventdata, handles, varargin)
set (handles.PointsButton,'enable','off')
set(handles.ConvergenceButton,'enable','off')
function varargout = ComputeButton_Callback(h, eventdata, handles, varargin)
setptr(handles.MonteCarloFigure,' watch')
rand('state',sum(100*clock)) % alter seed state
N = get(handles.NumberSlider,'value');
N = round(N);
x = 2*rand(N,2) - 1;
absx2 = sum(x.^2, 2);
estimate = cumsum(absx2<1);
estimate = 4 * estimate ./ (1:N)';
setptr(handles.MonteCarloFigure,' arrow')
handles.x = x;
handles.estimate = estimate;
guidata(h,handles);
set(handles.PointsButton,'enable','on')
set (handles.ConvergenceButton,'enable','on')
function varargout = PointsButton_Callback(h, eventdata, handles, varargin)
x = handles.x;
figure
t = pi*(0:0.01:2);
plot(cos(t),sin(t),'r','linewidth', 2)
hold on
plot(x(:,1),x(:, 2),'k.','markersize',1)
axis equal, axis square
axis([-1.05 1.05 -1.05 1.05])
function varargout = ConvergenceButton_Callback(h, eventdata, handles, varargin)
est = handles.estimate;
figure
loglog(1:length(est), abs(pi-est))
function varargout = QuitButton_Callback(h, eventdata, handles, varargin)
delete(gcbf)
```


## 10 Object-oriented programming

Object-oriented programming (OOP) is a paradigm meant to aid in the development and maintenance of large programming projects. It some ways it differs significantly from the functional programming that dominates the history of computing (and most current scientific computing). Although not designed with an interactive system like MATLAB in mind, OOP brings benefits to it as well, chiefly in the design of self-contained packages.

The major concepts of OOP are
Encapsulation Different kinds of data are collected into one named object. An object's contents cannot be altered directly. Instead one must use procedures called methods for operating on the data.

Inheritance Objects can be defined in a hierarchy in which "child" objects can inherit data formats and methods from its "parent."

Overloading Operators and functions that are already defined in other contexts can be extended to work with new object types.

Each of these is supported by MATLAB, although not to the extent of a language such as Java or C++.

### 10.1 OOP in MATLAB

You define a class of objects that spells out the data held by an object and the methods defined for it. The methods are regular functions in a special directory whose name must start with the at-sign @. If that directory is on the MATLAB path, you can then create instances of the class to hold data.

Every class must include a special method called the constructor, which has the same name as the class directory (without @). The constructor lays out in a structure (section 7.3) the template of data needed for this object and initializes the data as it sees fit. Once the structure is ready, the constructor calls class to create an object instance. (Users and other functions may also use class to inquire about an object's type.) Once an instance is constructed, the methods in the class directory are the only functions that can operate on it.

The constructor may choose to signify that the current class is a child of another existing class. In that case, the child object inherits all of the data fields and methods of the parent class. Inheritance is often used to implement the "is a" relationship; object types that are more specific than some other type may logically inherit from that type. For instance, a circle is a special kind of ellipse. Anything you might want to know about or do to an ellipse could also be asked of a circle. However, a circle is more specific and might support additional operations not known to ellipses (like a "radius" method).

Methods in a class directory that have the same name as other MATLAB functions will overload those functions when called on an instance of the object. For example, a circle class might have a method called plot that knows how to plot a circle. You are even allowed to overload built-in operators such as $+, *, /, . *$, etc. Each of these actually has a full function name (plus or uplus, mtimes, mrdivide, and times for the examples above) that can be overloaded. You can also overload transposition, array concatenation, and array subscript referencing, so that (for instance) p(i) might return the $i$ th vertex of polygon p . (For a complete list of overloadable operators, type help *.) Another important overloadable function is display, which controls what MATLAB types out when an object is the result of an expression that does not end with a semicolon.

### 10.2 An OOP example

Let's look at an object class for polygons. Here is the constructor, in @polygon/polygon.m.

```
function p = polygon(x,y)
superiorto('double');
if nargin==0
 % Template call.
 p.x = [];
 p.y = [];
else
 if length(x)~=length(y) | length(x)<3
 error('Invalid vertex data.')
 end
 p.x = x;
 p.y = y;
end
p = class(p,'polygon');
```

Note that the data defining $p$ are created just like a structure (section 7.3). The call to class must be done after all the fields of $p$ have been created. The nargin==0 case is important: If a MAT-file containing a polygon object is loaded into the workspace, MATLAB will call the constructor with no arguments in order to see what fields a polygon ought to have. Finally, the call to superiorto is useful for overloading. It says that function calls that have both polygons and doubles (i.e. numbers, or arrays of numbers) should look first for polygon methods before applying functions for doubles. The default behavior is to give priority based on ordering of the function arguments, so $p+2$ and $2+p$ would be interpreted differently.

Next we write a function @polygon/display.m:

```
n = length(p.x);
if n < 10
 % Show all vertices
 fprintf('\n Polygon with vertices\n\n')
 fprintf(' (%8.3g,%8.3g)\n',[p.x'; p.y'])
else
 % Summary only
 fprintf('\n Polygon with %i vertices\n',n)
end
fprintf('\n')
```

Now, if you enter $\mathrm{p}=\mathrm{polygon}([-0.5,1,-1],[2,0,2]$ ), you will see

Polygon with vertices

| $($ | -0.5, | $2)$ |
| ---: | ---: | ---: |
| $($ | 1, | $0)$ |
| $($ | -1, | $2)$ |

However, trying to reference $\mathrm{p} . \mathrm{x}$ from the command line will give an error. Only polygon methods are permitted to access the object data directly.

Next we extend plot to understand polygons.

```
function h = plot(p,varargin)
if nargin==1
 % Default plot style
 varargin = {'b.-','markersize',10,'markeredgecolor','k'};
end
xx = p.x([1:end 1]); yy = p.y([1:end 1]);
hh = plot(xx,yy,varargin{:});
axis equal
if nargout > 0, h = hh; end
```

You can then use plot (p) to see a plot of the polygon.
It might be nice to be able to rotate a polygon about a specified center.

```
function q = rotate(p,center,theta)
xy(:,1) = p.x - center(1);
xy(:,2) = p.y - center(2);
A = [cos(theta) -sin(theta); sin(theta) cos(theta)];
xy = (A* Xy')'; % or }x\mp@subsup{y}{}{\prime}\mp@subsup{|}{}{\prime}\mp@subsup{A}{}{\prime}
q = polygon(xy(:,1)+center(1), xy(:,2)+center(2));
```

Translation can be expressed by adding a 2-element vector.

```
function q = plus(p,v)
if isa(v,'polygon')
 tmp = v; v = p; p = tmp;
end
q = polygon(p.x+v(1), p.y+v(2));
```

Notice how the order of arguments was checked. In practice you would probably want to do more error checking.

Another useful function is the ability to extract the numerical values of the vertices. A convenient syntax is to define a method double, which in other contexts already means "conversion to numerical values."

```
function xy = double(p)
xy = [p.x p.y];
```

Much more could be added to the polygon class, but let's consider creating a child class square. A square is a polygon, so inheritance is appropriate. However, a square might be specified by its center, orientation, and side length. The constructor @square/square.m could read as follows.

```
function s = square(varargin)
superiorto('double');
if nargin==0
 p = polygon;
 s.center = [];
elseif nargin==2
 % x, y given
 [x,y] = deal(varargin:);
 p = polygon(x,y);
 s.center = [mean(x) mean(y)];
else
 % center, angle, sidelen given
 [cen,ang,len] = deal(varargin:);
 s.center = cen;
 x = (0.5*len)*[[-1 -1 1 1];
 y = (0.5*len)*[[1 -1 -1 1];
 p = rotate(polygon(x,y),[0 0],ang) + cen;
end
s = class(s,'square',p);
```

The last line defines square to be a child of class polygon. The object s will have a field named "polygon" in which the parent instance p is stored and can be accessed. Every method defined for polygons can be applied to $s$, unless it is overloaded for squares. A square object can also store other kinds of data, as with the "center" field here.

Thus, if you create a square without a semicolon, you will get the usual polygon output. This is fine, but it might be nice to signal that this is in fact a square. So we write a method @square/display.m:
function display(s)
$x y=$ double(s.polygon);
fprintf('\n Square with corners\n\n')
fprintf(' (\%8.3g, \%8.3g) \n', $\mathrm{xy}^{\prime}$ )
fprintf(' ${ }^{\prime} n^{\prime}$ )
This will overload the @polygon/display method when a square is involved. We can also create a method for a square that has no polygon counterpart:

```
function c = center(s)
c = s.center;
```


### 10.3 Exercises

1. Use the functions you already have for polygon perimeter and area (page 28) to add these capabilities to the polygon class.
2. Add the ability to scale a polygon through the syntax of scalar multiplication. For instance, $2 * \mathrm{p}$ should double all the vertices in p . You might then figure out how to make -p be interpreted as $(-1) * p$.
3. Add the ability to extract or change a single vertex (or, if you're ambitious, multiple vertices) of a polygon. See the help for subsref and subsasgn.
4. Create a class ivp for initial-value problems for ordinary differential equations. It should store at least the ODE (probably using a function handle) and an initial condition. Consider how to do this so that a method solve could invoke a built-in ODE solver such as ode 45 to solve the IVP numerically. This too could be stored in the object so that future calls could evaluate or plot the solution (see help for deval).

## 11 Linking to FORTRAN or C

This section is really just a sketch right now.
There are three ways that MATLAB can interface to code written in FORTRAN or C: ${ }^{29}$

- Calling FORTRAN or C routines from MATLAB (MEX interface).
- Calling MATLAB functions from C or FORTRAN (Engine services).
- Converting MATLAB code to standalone C (MATLAB-C Compiler).

The first option is useful when you want to speed up the execution of a slow MATLAB function, or when you want to take advantage of previously written code, such as that available on net lib. The second option can use MATLAB as a computational "backend" for a "frontend" interface written in another language, or to use MATLAB graphics from another program. The final option can create fast, independent programs that were originally developed in the MATLAB environment.

Here we discuss only MEX files. The discussion centers on FORTRAN, but C files are very similar (and perhaps a bit easier).

### 11.1 How MEX files work

MEX files work like alternatives to M-files. The name of a MEX file on the path can be invoked in MATLAB just like any other function. A MEX file is created by compiling code consisting of two main parts: a computational part, which is usually ordinary code, and a gateway section that knows how to exchange data with MATLAB.

There are some major differences between MEX files and M-files:

- Since they come from compiled and linked FORTRAN or C, MEX files are platform-dependent and need to be constructed in a separate step.
- Memory management is much more the responsibility of the programmer than in M-files. They do not get their own workspace, but can operate in the caller's workspace.
- MEX files do not carry documentation that can be found by help. Instead, you put the documentation into an otherwise empty M-file of the same name.

Every variable in MATLAB has a value that is called an mxArray in a MEX file. An mxArray has information about the data type of the variable (double, string, cell array, etc.), its size, and pointers to its data. The data of a double-class array are stored in separate arrays of real and imaginary parts, in the FORTRAN row-varying-first order.

[^23]The MEX gateway operates on an mxArray through routines whose names start with mx. There are also functions starting with mex for working with the MATLAB process (e.g., to evaluate commands). These external functions are linked automatically when you compile the code using the mex script provided with MATLAB.

### 11.2 Examples and outline

Some MEX examples are in the directory extern/examples/refbook found in the main MATLAB installation directory. These are discussed in the online "External Interfaces" manual. To try them, follow the instructions in the manual.

The gateway always begins with the line

```
subroutine mexfunction(nlhs,plhs,nrhs,prhs)
```

This is how the gateway will access the input (RHS) and output (LHS) arguments to the MEX function call. The basic outline is

1. Get basic info (sizes, classes, etc.) about input arguments and check their validity.
2. Create an mxArray for each of the nlhs outputs.
3. Call the computational section, using indirection to make the MATLAB data look like regular FORTRAN arrays.
4. Store the computational results in the output arguments, free any temporary variables, and exit.

[^0]:    *Department of Mathematical Sciences, Ewing Hall, University of Delaware, Newark, DE 19716; driscoll@math.udel.edu.
    ${ }^{1}$ Here and elsewhere I am thinking of the "old FORTRAN," FORTRAN 77. This is not a commentary on the usefulness of FORTRAN 90 but on my ignorance of it.

[^1]:    ${ }^{2}$ In particular, feel free to right-click (on Control-click on a Mac) on various objects to see what you might be able to do to them.

[^2]:    ${ }^{3} \mathrm{j}$ is also understood for $\sqrt{-1}$. Both names can be reassigned, however, and it's safer to use always $1 i$ or 1 j to refer to the imaginary unit.

[^3]:    ${ }^{4}$ Like other names, eps can be reassigned, but doing so has no effect on the roundoff precision.

[^4]:    ${ }^{5}$ Because of this, array sizes are not usually passed explicitly to functions as they are in FORTRAN.

[^5]:    ${ }^{6}$ What's more, the distinction between row and column vectors is often, but not always, important.

[^6]:    ${ }^{7}$ In a recent version of MATLAB the commands false and true were introduced for creating logical arrays.

[^7]:    ${ }^{8}$ This is often the result of a "nearest neighbor interaction" that the matrix is modeling. For instance, the PageRank algorithm used by Google starts with an adjacency matrix in which $a_{i j}$ is nonzero if page $j$ links to page $i$. Obviously any page links to a tiny fraction of the more than 3 billion and counting public pages!

[^8]:    ${ }^{9}$ MATLAB does avoid copying an argument (i.e., it "passes by reference" as in FORTRAN) if the function never alters the data.

[^9]:    ${ }^{10}$ If you want short-circuit behavior for logical operations outside if and while statements, you must use the special operators \| and \&\&.
    ${ }^{11}$ Execution does not "fall through" as in C.

[^10]:    ${ }^{12}$ The term "debugging" is perhaps too limited, since the debugging tools are also very helpful in getting to understand working code that someone else has written.

[^11]:    ${ }^{13}$ However, see section 4.3.

[^12]:    ${ }^{14}$ For this simple case, an anonymous function could have been used in place of the nested function.
    ${ }^{15}$ Past versions of MATLAB used feval to evaluate functions passed as arguments, but this syntax is now officially discouraged and may disappear.

[^13]:    ${ }^{16}$ A significant difference from Maple and other packages is that if the viewpoint is rescaled to zoom in, the "dots" are not recomputed to give a smooth curve.

[^14]:    ${ }^{17}$ It's easier to learn using menus, but the command forms can be placed in a script.

[^15]:    ${ }^{18}$ In fact it's often faster on a printer to interpolate the data yourself and print it with flat shading. See interp 2 to get started on this.

[^16]:    ${ }^{19}$ JPEG is especially bad for line drawings since it is also "lossy."
    ${ }^{20}$ However, for ${ }^{\mathrm{ET}} \mathrm{E} X$ documents (such as this one) outputting directly to PDF, one must use a bitmap format, preferably PNG.
    ${ }^{21}$ Check out the LTE $_{\mathrm{E}}$ Xpackage psfrag for putting any text or math formula anywhere in an EPS graphic.

[^17]:    ${ }^{22}$ In a pinch, you can write a time-consuming function alone in C and link the compiled code into MATLAB. See section 11 and the online help under "External interfaces."
    ${ }^{23}$ As a bonus you may find that learning to "properly" streamline MATLAB code helps to sharpen your fundamental linear algebra skills. At least, I did.

[^18]:    ${ }^{24}$ persistent variables, unlike others, are given an initial value: the empty matrix.

[^19]:    ${ }^{25}$ To right-multiply by $A^{-1}$, use a forward slash, as in $\mathrm{x}=\mathrm{b} / \mathrm{A}$.

[^20]:    ${ }^{26}$ Technically, all eigenvalue and singular value methods must be iterative. However, the classical methods used by eig and svd converge very quickly and in practice spend most of their time in a finite preprocessing step.

[^21]:    ${ }^{27}$ The only difference between the two cases is in the output-the time steps chosen by the algorithm in the solver are unaffected.

[^22]:    ${ }^{28}$ Often a cell array (section 7.2) of strings here is interpreted as one string per text line.

[^23]:    ${ }^{29}$ It's worth mentioning here as well that MATLAB can instantiate and act on objects from any externally defined Java class directly. See the online help for java.

