KTH Teknikvetenskap

SF1626 Calculus in Several Variable
Solutions to the exam 2016-01-12
Del A

1. Let D be the region above the x-axis in the $x y$-plane that is bounded by the circle $x^{2}+y^{2}=$ 1 and the lines $y=-x$ and $y=\sqrt{3} x$. Compute the x-coordinate of the centre of mass of D which is given by

$$
\frac{\iint_{D} x d x d y}{\iint_{D} d x d y}
$$

Solutions.

Answer.
2. Compute the line integral

$$
\int_{C} x y d x-y^{2} d y
$$

where the curve C it the counter-clockwise oriented triangle with vertices in $(0,0),(3,0)$ och $(0,4)$.

Solutions.

Answer.
3. Let $f(x, y)=e^{x-y}-x+y+x y$.
(a) Show that the origin is a critical point to the function f.
(b) Is the origin a local minimum, a local maximum or neither for the function f ?

Solutions.

Answer.

Del B

4. Let $f(x, y)=x g(x+2 y)$ where g is a twice continuously differentiable function. Show that

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x^{2}}-\frac{\partial^{2} f}{\partial y \partial x}+\frac{1}{4} \frac{\partial^{2} f}{\partial y^{2}}=0 . \tag{4p}
\end{equation*}
$$

Solutions.

Answer.
5. A curve in the plane is parametrized by

$$
\mathbf{r}(t)=\left(t^{2} \cos t, t^{2} \sin t\right)
$$

where $t \geq 0$.
(a) Compute the velocity $\mathbf{r}^{\prime}(t)$ and the speed $\left|\mathbf{r}^{\prime}(t)\right|$ for $t \geq 0$.
(b) Compute the arc length of the curve from the point $\mathbf{r}(0)$ to the point $\mathbf{r}(2)$.

Solutions.

Answer.
6. A filled water tank has the shape of a straight truncated circular cone with the lower radius a, upper radius b, where $b>a$, and height h, according to the figure.

The conical part S of the tank can be parametrized by

$$
\left\{\begin{array}{l}
x=\left(\frac{b-a}{h} s+a\right) \cos t \\
y=\left(\frac{b-a}{h} s+a\right) \sin t \\
z=s
\end{array}\right.
$$

where $0 \leq s \leq h, 0 \leq t<2 \pi$. The force by which the water acts on the surface S has a z-component that is given by the flux of the vector field

$$
\mathbf{P}(x, y, z)=\rho g(h-z)(0,0,1)=(0,0, \rho g(h-z))
$$

out through the surface S, where ρ is the density of the water, and g is the gravitational acceleration. Compute this force component by means of computing the flux integral.

Solutions.

Del C

7. Show that if x, y and z satisfy that $x \geq 0, y \geq 0, z \geq 0$ and $x+2 y+3 z \leq 3$ then $x y z \leq 1 / 6$.

Solutions.

Answer.
8. A solid K in space lies between the planes $z=0$ and $z=1$. In addition, we know that the intersection of the plane $z=a$ and the solid consists of a cirdular disk of radius a^{2} for every a in the interval $0 \leq a \leq 1$.
(a) Sketch two different such solids K.
(b) Do we know enough in order to determine the volume of the solid K ? In that case, compute the volume, otherwise explain what is missing.

Solutions.

Answer.

9. Let \mathbf{F} be the vector field

$$
\mathbf{F}(x, y, z)=(x-2, y+1, z-1)
$$

and let C_{P} be an oriented smooth curve beginning at the origin and ending at the point $P=\left(x_{0}, y_{0}, z_{0}\right)$. Determine the point P that lies farthest away from the origin and which satisfies the condition

$$
\int_{C_{P}} \mathbf{F} \cdot d \mathbf{r}=9
$$

Solutions.

