

KTH Teknikvetenskap

SF1626 Calculus in Several Variable Solutions to the exam 2016-01-12

Del A

1.	Let D be the quadrilateral with vertices in the points $(0,0)$, $(6,0)$, $(1,4)$ and $(5,6)$.		
	(a) Sketch the quadrilateral D and compute its area.	(1 p))

- (a) Sketch the quadrilateral D and compute its area.
- (b) Determine the center of mass of the quadrilateral. (**3 p**)

Solutions.

- 2. The vector field **F** in the plane is given by $\mathbf{F}(x, y) = (y^2, 2xy + 1)$.

 - (a) Determine whether \mathbf{F} is conservative. (b) Compute the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the curve parametrized by

$$\mathbf{r}(t) = (te^t, e^{t-1}), \qquad 0 \le t \le 1.$$

(**3** p)

(1 p)

Solutions.

3. The plane curve C is parametrized by

$$\mathbf{r}(t) = \left(\sin t, \sin t + \sqrt{2}\cos t\right), \qquad 0 \le t \le 2\pi$$

- (a) Determine where a paticle travelling according to this parametrization has the highest speed. (2 p)
- (b) The curve is closed and encloses a domain D with area given by the line integral

$$\int_C y \, dx.$$

Compute this area.

Solutions.

(a)

$$\sin^2 t + \sin^2 t + 2\sin t \cos t + \cos^2 t = 1 + \frac{1 - \cos 2t}{2} + \sin 2t = \frac{3}{2} + \sin 2t - \frac{1}{2}\cos 2t = \frac{3}{2} + \frac{1}{2}\cos 2t = \frac{1}{2} + \frac{1}{2}\cos 2t = \frac{1}{2} + \frac{1}{2}\cos 2t = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} +$$

(2 p)

Del B

- 4. Let f(x, y) = 2x 20y + x² xy² + 2y³.
 (a) Compute the Taylor polynomial of degree two of the function f around the point (1, 2).(2 **p**)
 - (b) Use the Taylor polynomial to determine whether (1, 2) as a critical point to f is a local maximum, local minimum or neither. (2 p)

Solutions.

5. Compute the flux of the vector field $\mathbf{F}(x, y, z) = (x^2y, -y^2, yz^2)$ out through the boundary surface of the domain that is enclosed by the surface $y^2 + z^2 = 9$, the plane x = 2 and the coordinate planes. (4 p)

Solutions.

6. Osquar will furnish a cozy corner in his apartment and he needs to measure the distance *a* between a cupboard and the opposite wall.

Since the area in between is not accessible for the moment it is difficult to measure the distance a directly, so instead he measures the distances b and c, according to the picture

and he gets

 $b = 12 \pm 0.01$ dm, $c = 20 \pm 0.01$ dm.

Then he uses the Pythagorean theorem in order to determine an expression for a in b and c. Use linearization (linear approximation) of this expression in order to determine a with error margin. (4 p)

Solutions.

Del C

- 7. (a) Show that a conservative vector field $\mathbf{F}(x, y, z)$ in three dimensions is *irrotational*, det vill säga uppfyller curl $\mathbf{F} = \nabla \times \mathbf{F} = 0$. (2 p)
 - (b) We say that a vector field $\mathbf{F}(x, y, z)$ in three dimensions has an *integrating factor* f(x, y, z) if $f(x, y, z) \neq 0$ is a function such that the vector field $f\mathbf{F}$ is conservative. Show that if \mathbf{F} has an integrating factor then rot \mathbf{F} is orthogonal to \mathbf{F} everywhere.

(2 p)

Solutions.

8. In computer science it is studied Inom datalogin studeras bland annat hur slumpträd uppdateras vid slumpmässigt borttagande av element. Då behöver trippelintegralen

$$\iiint_{0 \le x \le y \le z \le 1} \left((y-x)^k - (z-y)^k \right) dx \, dy \, dz$$

beräknas där k är ett positivt heltal. Beräkna denna trippelintegral för alla k > 0.

(**4 p**)

Solutions.

(a)

8

9. Determine the highest point of the paraboloid $z = x^2 + 4y^2$ that is lit by a point light source in (a, b, 0). (4 p)

Solutions.