KTH Teknikvetenskap

SF1626 Calculus in Several Variable
Solutions to the exam 2016-01-12
Del A

1. Let $D$ be the quadrilateral with vertices in the points $(0,0),(6,0),(1,4)$ and $(5,6)$.
(a) Sketch the quadrilateral $D$ and compute its area.
(b) Determine the center of mass of the quadrilateral.

## Solutions.

(a)
2. The vector field $\mathbf{F}$ in the plane is given by $\mathbf{F}(x, y)=\left(y^{2}, 2 x y+1\right)$.
(a) Determine whether $\mathbf{F}$ is conservative.
(b) Compute the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $C$ is the curve parametrized by

$$
\mathbf{r}(t)=\left(t e^{t}, e^{t-1}\right), \quad 0 \leq t \leq 1
$$

## Solutions.

3. The plane curve $C$ is parametrized by

$$
\mathbf{r}(t)=(\sin t, \sin t+\sqrt{2} \cos t), \quad 0 \leq t \leq 2 \pi
$$

(a) Determine where a paticle travelling according to this parametrization has the highest speed.
(b) The curve is closed and encloses a domain $D$ with area given by the line integral

$$
\int_{C} y d x .
$$

Compute this area.

## Solutions.

(a)

$$
\sin ^{2} t+\sin ^{2} t+2 \sin t \cos t+\cos ^{2} t=1+\frac{1-\cos 2 t}{2}+\sin 2 t=\frac{3}{2}+\sin 2 t-\frac{1}{2} \cos 2 t=\frac{3}{2}+
$$

## Del B

4. Let $f(x, y)=2 x-20 y+x^{2}-x y^{2}+2 y^{3}$.
(a) Compute the Taylor polynomial of degree two of the function $f$ around the point $(1,2)$.
(b) Use the Taylor polynomial to determine whether $(1,2)$ as a critical point to $f$ is a local maximum, local minimum or neither.

## Solutions.

(a)
5. Compute the flux of the vector field $\mathbf{F}(x, y, z)=\left(x^{2} y,-y^{2}, y z^{2}\right)$ out through the boundary surface of the domain that is enclosed by the surface $y^{2}+z^{2}=9$, the plane $x=2$ and the coordinate planes.

## Solutions.

(a)
6. Osquar will furnish a cozy corner in his apartment and he needs to measure the distance $a$ between a cupboard and the opposite wall.

Since the area in between is not accessible for the moment it is difficult to measure the distance $a$ directly, so instead he measures the distances $b$ and $c$, according to the picture

and he gets

$$
\begin{aligned}
& b=12 \pm 0,01 \mathrm{dm} \\
& c=20 \pm 0,01 \mathrm{dm} .
\end{aligned}
$$

Then he uses the Pythagorean theorem in order to determine an expression for $a$ in $b$ and $c$. Use linearization (linear approximation) of this expression in order to determine $a$ with error margin.

## Solutions.

(a)

## Del C

7. (a) Show that a conservative vector field $\mathbf{F}(x, y, z)$ in three dimensions is irrotational, det vill säga uppfyller curl $\mathbf{F}=\nabla \times \mathbf{F}=0$.
(b) We say that a vector field $\mathbf{F}(x, y, z)$ in three dimensions has an integrating factor $f(x, y, z)$ if $f(x, y, z) \neq 0$ is a function such that the vector field $f \mathbf{F}$ is conservative. Show that if $\mathbf{F}$ has an integrating factor then $\operatorname{rot} \mathbf{F}$ is orthogonal to $\mathbf{F}$ everywhere.

## Solutions.

(a)
8. In computer science it is studied Inom datalogin studeras bland annat hur slumpträd uppdateras vid slumpmässigt borttagande av element. Då behöver trippelintegralen

$$
\iiint_{0 \leq x \leq z \leq 1}\left((y-x)^{k}-(z-y)^{k}\right) d x d y d z
$$

beräknas där $k$ är ett positivt heltal. Beräkna denna trippelintegral för alla $k>0$.

## Solutions.

(a)
9. Determine the highest point of the paraboloid $z=x^{2}+4 y^{2}$ that is lit by a point light source in $(a, b, 0)$.

## Solutions.

(a)

