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1 Lecture 2. Finding the right Assumptions.

At the end of lecture 1 we noticed that there are bounded and increasing se-
quences of Riemann integrable functions fj(x)↗ f(x) (point-wise) without f(x)
being Riemann integrable. That sequences that converge in rather good ways
(increasing point-wise) whose limits are not integrable is a serious shortcoming
of the Riemann’s definition of the integral.

We also realized that the integral might be more versatile if we use the
approximation

N∑
j=−N

εjm ({x; jε < f(x) ≤ (j + 1)ε}) ≤

≤
∫ β

α

f(x)dx ≤
N∑

j=−N
ε(j + 1)m ({x; jε < f(x) ≤ (j + 1)ε}) ,

where m(A) is some measure of the length of the set A.
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Figure: The general idea with the Lebesgue integral is to approximate the
area under the graph of f by functions that are constant where f is almost
constant. In the figue we may approximate the area under the graph in on the
red part of the x−axis by a function that has constant value a for all x in the
red part of the x-axis denoted A1, and by a constant function with value b on
the green part A2. In order to calculate the area we must find a good way to
measure the length of the sets A1 and A2.

The main problem is how are we supposed to define a reasonable measure
of length? For simple sets, as intervals it is quite clear that the length of the
interval (a, b) should be b − a. But the sets {x; jε < f(x) ≤ (j + 1)ε} may be
very complicated and have huge oscillations; imagine the set{

x ∈ (0, 1); 10−3 < sin(e−1/x) ≤ 2 · 10−3
}

(1)

which will certainly have infinitely many components - and we might come up
with even worse examples1 of sets whose length we would like to measure.

There are certain things that we would want our measure (of length) to
satisfy. In particular, if we denote by m(A) the measure of the set A ⊂ R then
the following should hold

1. Any interval has its “natural length”: m((a, b)) = b − a for any interval
(a, b) ⊂ R.

2. The measure should be countable additive: m(∪jAj) =
∑∞
j=1m(Aj) for

any countable disjoint collection of sets Aj .

Later we will see that it is not possible to define any measure m, defined on all
subsets of R, in a way that satisfies these criteria.

A rather interesting fact is that open sets have length that is intuitively well
defined because of the following lemma.

Lemma 1.1. Let U ⊂ R be an open set. Then U =
⋃
j=1(aj , bj) where (aj , bj)

are countable (or finite) and disjoint set of open intervals.

Proof: Each connected component Ui of U is open and therefore contains a
rational point qi ∈ Q, fix one such point qi ∈ Q for each connected component
of U . We may therefore define an injection from the connected components of
U into a subset of Q that takes the connected component Ui to qi. Therefore
there is a bijection between the connected components of U and a subset of the
countable set Q. Therefore there are at most countable many connected subsets
of U . Clearly each connected and open set in R is an interval.

Since we would want the length of an interval, (a, b), to be b − a it would
be natural to define the length of an open set U =

⋃
j=1(aj , bj) ⊂ R to be∑

j(bj − aj). Since there are at most countable many intervals the sum is well
defined, though it might be diverge to ∞. Also since all terms bj − aj > 0 the
summation is independent of the order of summation. We can therefore ascribe
a length of an open set in a natural way. We will use this to define an outer
measure (of length).

1The example in (1) is not bad at all from the point of view of integration. The function
sin(e−1/x) is Riemann integrable on (0, 1).
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Definition 1.1. We define the outer Lebesgue measure m∗ on subsets A ⊂ R
to [0,∞) according to

m∗(A) = inf

∞∑
j=0

(bj − aj), (2)

where the infimum is taken over all countable (or finite2) unions of open inter-
vals (aj , bj) such that A ⊂

⋃∞
j=1(aj , bj).

This definition makes perfect intuitive sense. However it is not absolutely
clear that m∗(a, b) = b− a with this definition. We need the following lemma.

Lemma 1.2. The Lebesgue outer measure satisfies m∗([a, b]) = m∗((a, b)) =
m∗([a, b)) = m∗((a, b]) = b− a.

Proof: We begin by showing that m∗([a, b]) = b − a. The proof has several
steps.

Step 1: It is enough to consider finite coverings.

Since [a, b] is compact every open cover U = ∪∞j=1(aj , bj) reduces to a fi-

nite sub-cover Ũ = ∪Nj=1(aj , bj). Clearly, since bj − aj > 0,
∑N
j=1(bj − aj) <∑∞

j=1(bj − aj). It is therefore enough to consider finite coverings.

Step 2: It is enough to consider coverings consisting of one interval (a1, b1).

Assume that we have a covering Ũ = ∪Nj=1(aj , bj). Then, since a ∈ U there
exists one interval, say (a1, b1), so that a ∈ (a1, b1). If [a, b] ⊂ (a1, b1) we already
have one interval that covers [a, b] so lets assume that [a, b] 6⊂ (a1, b1). This
means that a < b1 < b and therefore b ∈ [a, b]. There must be another interval,
say (a2, b2), such that B1 ∈ (a2, b2). But then (a1, b2), (a3, b3), ..., (aN , bN ) also
cover of [a, b], with only N − 1 intervals, and furthermore

(b2 − a1) + (b3 − a3) + ...+ (bN − aN ) <

N∑
j=1

(bj − aj).

We have therefore shown that for any cover U , containing at least two intervals,
there is another cover with one less interval and smaller sum. We may conclude
that the smallest cover can be achieved with one interval.

Step 3: m∗([a, b]) = b− a.

Since, for any ε > 0, (a − ε/2, b + ε/2) is a cover of [a, b] it follows that
m∗([a, b]) ≤ b− a+ ε and therefore

m∗([a, b]) ≤ b− a

. Also any cover (c, d) of [a, b] must have c < a ≤ b < d which implies that
m∗([a, b]) ≥ b− a. The statement follows.

In order to show that m∗((a, b)) = m∗([a, b)) = m∗((a, b]) = b− a we notice
that, since (a, b) ⊂ (a, b] ⊂ [a, b] and [a, b) ⊂ [a, b], each of m∗((a, b)) ≤ b − a,
m∗((a, b]) ≤ b − a and m∗([a, b)) ≤ b − a hold. We have to prove the reverse
inequalities.

2In case the collection of intervals is finite then, naturally, the summation in (2) will be
over the index set of the intervals and not to infinity.
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To that end, let us assume that we con find a cover U = ∪∞j=1(aj , bj) of any

of the intervals such that
∑∞
j=1(bj −aj) < b−a, say

∑∞
j=1(bj −aj) = b−a− 5δ

for some δ > 0. Then

(a− δ, a+ δ)
⋃

(b− δ, b+ δ)
⋃
∪∞j=1(aj , bj)

is a cover of [a, b]. This would imply that m∗([a, b]) ≤ b−a−δ contradicting the
first part of the proof. We may conclude thatm∗((a, b)) ≥ b−a, m∗((a, b]) ≥ b−a
and m∗([a, b)) ≥ b− a. This finishes the proof.

The next simple lemma that we need is.

Lemma 1.3. [Monotonicity of the measure.] If A ⊂ B then m∗(A) ≤ m∗(B).

proof: This follows from the fact that every open cover of B is also an open
cover of A. Therefore

inf
A⊂U

∞∑
j=1

(bj − aj) ≤ inf
B⊂U

∞∑
j=1

(bj − aj),

where the infinmum is taken over all the open sets U = ∪∞j=1(aj , bj).
A somewhat refined estimate, the sub-additivity of the measure will be very

important later. The main thing we would expect from a measure of length,
besides that m∗([a, b]) = b−a, is that it is additive m∗(∪jAj) =

∑
jm
∗(Aj) for

disjoint sets Aj . When proving that m is additive we will repeatedly have to
prove statements like m(∪jAj) =

∑
jm(Aj); that is m(∪Aj) ≤

∑
m(Aj) and

m(∪Aj) ≥
∑
m(Aj). The following lemma proves one of the inequalities, and

it will be referred to frequently in the next lecture.

Lemma 1.4. [Sub-additivity of the outer measure.] Let Aj be a count-
able collection of sets in R then

m∗
(
∪∞j=1Aj

)
≤
∞∑
j=1

m∗(Aj). (3)

Proof: Using the definition of m∗ to write (3) we get

inf
∪∞j=1Aj⊂U∪

∞∑
k=1

(dk−ck) ≤
∞∑
J=1

(
inf

Aj⊂Uj

∞∑
l=1

(bj,l − aj,l)

)
= inf
Aj⊂Uj

∞∑
J=1

∞∑
l=1

(bj,l−aj,l)

where U∪ = ∪∞k=1(ck, dk) and Uj = ∪∞l=1(aj,l, bj,l) and all the summations and
unions are countable.

The lemma follows from noticing that the countable union of the countable
collections of intervals (aj,l, bj,l) is still a countable collection that we may take
as (ck, dk). So with any choice on the right side is also a choice on the left side.
This yields the lemma.

Lemma 1.5. If A is the disjoint union of countably many intervals (open, closed
or half open) with endpoints aj and bj, and A is bounded,3 then

m∗(A) =

∞∑
j=1

(bj − aj).

3Bounded is not really needed, but it makes the proof simpler.
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Sketch of the Proof: Let us first show the lemma for A = ∪∞j=1[aj , bj ].
We claim that, for any finite N ,

m∗(∪Nj=1[aj − bj ]) =

N∑
j=1

(bj − aj). (4)

Since ∪Nj=1[aj−bj ] is compact it is enough to consider finite open coverings when

calculating m∗(∪Nj=1[aj − bj ]). But arguing as in Lemma 1.1 it is easy to see
that each interval [aj , bj ] is covered by one open interval in the covering. Next
one can easily show that if any open cover has a connected interval containing
two adjacent intervals (adjacent is well defined since N is finite) then we may
decrease the outer measure of the cover by splitting that interval into two. It
follows that each [aj , bj ] there is no loss of generality in covering ∪Nj=1[aj−bj ] by
disjoint open intervals, each containing exactly one of the [aj , bj ]. The equality
(4) easily follows.

By monotonicity of the outer measure and (4):

N∑
j=1

(bj − aj) = m∗(∪Nj=1[aj − bj ]) ≤ m∗(A).

Letting N →∞ implies that

∞∑
j=1

(bj − aj) ≤ m∗(A) ≤
∞∑
j=1

(bj − aj),

where the last inequality follows from sub-additivity of the measure.
In case some, or all, of the intervals Ij that define A = ∪∞j=1Ij are open or

half open the lemma still holds. Let us briefly indicate why. By sub-additivity
and Lemma 1.1 it follows that

m∗(A) ≤
∞∑
j=1

m∗(Ij) =

∞∑
j=1

(bj − aj),

it is therefore enough to show that

m∗(A) ≥
∞∑
j=1

(bj − aj).

Arguing by contradiction we assume that, for some δ > 0

m∗(A) =

∞∑
j=1

(bj − aj) + δ.

This means that there exists an open cover ∪∞j=1(cj , dj) of A such that

∞∑
j=1

(cj − dj) ≤
∞∑
j=1

(bj − aj) +
δ

2
.

If we adjoin the intervals(
aj −

δ

8 · 2−j
, aj +

δ

8 · 2−j

)
and

(
bj −

δ

8 · 2−j
, bj +

δ

8 · 2−j

)
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to the collection (cj , dj) then we get an open cover U = ∪∞j=1(ej , fj) of ∪∞j=1Ij
such that

∞∑
j=1

(fj − ej) =

∞∑
j=1

(dj − cj) + 2

∞∑
j=1

2
δ

8 · 2−j
<

∞∑
j=1

(bj − aj) = m∗(∪∞j=1Ij),

where we used the first part of the argument in the last equality.4 But since
∪∞j=1(ej , fj) is an open cover of ∪∞j=1Ij we would get a contradiction.

The Lemma 1.1 shows that the outer measure m∗ at least behaves the way
we want on intervals. The good thing with the definition of m∗ is that it also
gives a well defined length of all sets A ⊂ R. However, and rather amazingly
it turns out that there is no measure µ whatsoever that is defined on all sets
A ⊂ R that has the good properties that we would expect of a measure.

Proposition 1.1. [Vitali sets] There is no non-negative function µ : P(R) 7→
R+, µ 6= 0 and µ(A) 6=∞ for bounded sets A, such that: 5

1. µ(A) = µ(x0 +A) for all sets A ⊂ R.6

2. µ
(
∪∞j=0Aj

)
=
∑∞
j=1 µ(Aj) for any countable and disjoint collection of sets

Aj.

Proof: Let us first show that the proposition holds on the set P([0, 1)) if we
interpret all numbers modulo 1. At the end of the proof we will indicate how
to treat the case stated in the proposition.

Define the equivalence relation x ≈ y if x = y+q for some q ∈ Q (everything
is calculated modulo 1). By using the axiom of choice we may form a set A
consisting of one element from every equivalence class. Then each x ∈ [0, 1)
may be written x = y + q for y ∈ A and q ∈ Q ∩ [0, 1). Since q ∈ Q ∩ [0, 1) is a
countable set we may define the sets Aj = qj+A, where {qj ; j ∈ N} = Q∩[0, 1).
Since every x ∈ [0, 1) can be written x + q it follows that ∪∞j=1Aj = [0, 1). By
construction Aj ∩Ak = ∅ if j 6= k, this since A only contains one element form
each equivalence class.

To summarize Aj forms a countable disjoint collection of sets such that

[0, 1) = ∪∞j=0Aj . (5)

Furthermore, for each j, k ∈ N,

Aj = Ak + q for some q ∈ Q ∩ [0, 1). (6)

Assume, aiming for a contradiction, that there a function µ as in the propo-
sition then, in view of assumption 1 and (6), µ(Aj) = µ(Ak) for all j, k ∈ N.
Also, from assumption 2 and (5), we may conclude that

µ([0, 1)) =

∞∑
j=0

µ(Aj). (7)

4Here we are a little sketchy. In particular, even if Ij are disjoint it might not follow that

Ij are disjoint. I am not quite sure that it is very interesting to investigate this here so I will
leave it to the reader to clarify this point.

5We use the notation P(R) for all subsets of R, or more generally P(S) is the set of all
subsets of S. We also use the notation R+ = {x ∈ R; x ≥ 0}.

6Here x0 + A is the translation of A by x0; x0 + A = {x0 + x; x ∈ A}.
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Since µ 6= 0, and µ ≥ 0, it follows that µ([0, 1)) > 0 and therefor not all
µ(Aj) 6= 0. We conclude that µ(Aj) = c > 0 for some j therefore, and because
of (6), µ(Aj) = c > 0 for all j. But if µ(Aj) = c > 0 for all j then the series
in (7) diverges which means that µ([0, 1)) = ∞ for a bounded set. We get a
contradiction.

If we want to prove the same thing for R then we may argue similarly and
define the set A as containing one representative from each equivalence class
and then define

Aj = {x+ qj ; x ∈ A, x+ qj ∈ [0, 1)}︸ ︷︷ ︸
=A+

j

⋃
{x+ qj − 1; x ∈ A, x+ qj ∈ [1, 2)}︸ ︷︷ ︸

=A−j

.

Then, for all j, µ(Aj) = µ(A) since µ(Aj) = µ(A+
j ∪ A

−
j ) = µ(A+

j ) + µ(A−j ) =

µ(A+
j ) + µ(1 +A−j ) = µ(qj +A) = µ(A). We arrive at

µ([0, 1)) =

∞∑
j=1

µ(Aj). (8)

Since the series in (8) cannot be ∞ since the left side is the measure of a finite
set we can conclude that µ(Aj) = 0, and therefore µ([0, 1)) = 0. It follows that

µ(R) = µ (∪k∈Z[k, k + 1)) =
∑
k∈Z

µ([0, 1)) = 0,

where we used translation invariance (assumption 1) in the last equality. But
µ(R) = 0 is a contradiction to µ 6= 0.

Since any reasonable definition of what length is should include the assump-
tions 1 and 2 we need to define the measure on a smaller domain than P(R).
It is not absolutely clear what domain is the right domain of definition of the
measure m∗. It turns out that the right definition of the (restricted) domain of
m∗ are the measurable sets.

Definition 1.2. We define the Lebesgue measure m to be equal to m∗ on the
sets S ⊂ R that satisfies, for all sets X ⊂ R,

m∗(S) = m∗(X ∩ S) +m∗(X ∩ Sc). (9)

We call the sets S that satisfy (9) measurable and the collection of all measurable
sets will be denoted M.

That is, the Lebesgue measure m is just m∗ with domain of definition re-
stricted to on the collection of measurable sets M. In order for the measure to
be useful we need to show that it satisfies some basic properties. In particular
we would want the measure to satisfy the countable additivity condition

m(∪∞j=1Aj) =

∞∑
j=1

m(Aj) (10)

for each countable collection of measurable sets Aj . But for the countable ad-
ditivity condition to be meaningful we need ∪∞j=1Aj to be measurable whenever
the sets Aj are.
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Defining the Lebesgue measure and measurable sets the way we do leads to
two big questions. First: Will m satisfy the countable additivity condition (10)?
Second: Which sets are measurable? If the class of measurable sets is to small
then the Lebesgue measure will be useless.

We will show that all open sets are measurable and also that the measurable
sets forms a σ−algebra - being a σ−algebra implies that the set of measurable
sets M is rich and flexible enough to use for integration.

Definition 1.3. Let R be a set and S be a collection of subsets of R. Then we
say that S is a σ−algebra if

1. ∅ ∈ S and R ∈ S,

2. if A ∈ S then Ac ∈ S and

3. if Aj ∈ S, j ∈ N, then ∪∞j=1Aj ∈ S.

Remark: Notice that the third condition also implies that finite unions
∪Nj=1Aj ∈ S. This follows by choosing Aj = ∅ for j > N .

One of our aims will be to show thatM is a σ−algebra of subsets of R. That
∅ ∈ M and R ∈ M is clear from the definition of M. It also follows directly
from the definition ofM that if A ∈M then Ac ∈M.7 We therefore only need
to show that if Aj ∈ M, j ∈ N, then ∪∞j=1Aj ∈ M. The last condition is, of
course, what we need in order to prove the countably additivity condition for
m.

It is rather easy to show that if S is a σ−algebra then S contains many more
sets than what is obvious from the definition.

Proposition 1.2. Let S be a σ−algebra of subsets of R then

1. if A,B ∈ S then A \B ∈ S and

2. if Aj ∈ S, j ∈ N, then ∩∞j=1Aj ∈ S.

Remark: That finite intersections ∩Nj=1Aj ∈ S if Aj ∈ S follows from the
final condition by choosing Aj = R for j > N .

Proof of Proposition 1.2: The first statement follows from the second since
A \B = A ∩ (Bc) and if B ∈ S then Bc ∈ S.

To show the second statement we just notice that

∞⋂
j=1

Aj =
(
∪∞j=1 A

c
j

)c
.

We will end this lecture by arguing that the, admittedly rather technical,
definition of a measurable set gives a rather natural definition of length.

Example: Later we will prove that open and closed sets are measurable,
but for this example we will assume these facts.

Assume that A ⊂ [0, 1] and we want to find the measure of A, assume also
the measure of open and closed sets is well defined. The measure of A must

7This is clear form (9) which is symmetric in A and Ac. In particular, substituting Ac for
A (and using (Ac)c = A) will not change (9).
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be greater than (or equal to) supK⊂Am
∗(K), K closed, and less than (or equal

to) infA⊂U m
∗(U) = m∗(A), U open.8 The measure of A would then be well

defined if
sup
K⊂A

m∗(K) = inf
A⊂U

m∗(U) = m∗(A). (11)

But if [0, 1] \K, for K ⊂ A, is an open set that contains [0, 1] \A therefore

sup
K⊂A

m∗(K) = m∗([0, 1])− inf
([0,1]\A)⊂U

m∗(U) = m∗([0, 1])−m∗([0, 1] \A) (12)

- notice that because of Lemma 1.1 the definition of the length of open sets is
rather uncomplicated and unambiguous which means that it is rather uncom-
plicated to define the length of closed sets.

Using (12) in (11) we get that the length of A is “well defined” only if

m∗([0, 1])−m∗([0, 1]\A) = m∗(A)⇒ m∗([0, 1]) = m∗([0, 1]∩Ac)+m∗([0, 1]∩A),

which is exactly the condition we get in the definition of measurable set with
X = [0, 1]. That allow X to be a general set instead of an interval is a matter of
adjusting to the tradition of measure theory.9 The point is that the condition
of measurable more or less states that we can ascribe a measure to a set A if the
largest closed set contained in A has the same measure as the smallest open set
containing A. The spirit of the definition of measurable is that the “length” of
a measurable set can be sandwiched between two sets whose measure we konw.

2 Lecture 3. Proving that the Assumptions are
Right.

In this lecture we will prove that the measurable sets really form a σ−algebra
and that the Lebesgue measure satisfies the countable additivity condition. We
also need to show that the set of measurable sets is rich, in particular we will
show that the measurable sets contains all open sets. The material is rather
technical but, in its own way, very amazing.

Our first goal is to show that all open sets are measurable. The proof is
rather long so we will begin with a lemma.

Lemma 2.1. Assume that U is open and that I = (a, b) then

m∗(I) = m∗(U ∩ I) +m∗(U ∩ Ic).

Proof: By Lemma 1.4 it follows that

m∗(I) ≤ m∗(U ∩ I) +m∗(U c ∩ I).

Therefore we only need to show that

m∗(I) ≥ m∗(U ∩ I) +m∗(U c ∩ I). (13)

8There might be a slight mystery why we want K to be closed and U to be open, but let
us accept that.

9And that in more abstract cases, for sets different than R, there might not be anything
as natural as an interval to use.
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By Lemma 1.1 we may write U = ∪∞j=1(aj , bj). We may also assume that U is
bounded since we intersect U by a the bounded set I in each occurrence in (13).
The argument will be split up into several steps.

Step 1: There exists, for every ε > 0, an N such that

m∗(U) ≤
N∑
j=1

(bj − aj) + ε.

There is no loss of generality to assume that each (aj , bj) ∩ I 6= ∅ and, upon
relabeling, to assume that aj < bj < aj+1 < bj+1. Define Uε = ∪Nj=1(aj , bj) and
notice that the closed set U cε is the union of

(−∞, a1], [b1, a2], [b2, a3], ..., [bN−1, aN ], [bN ,∞).

Proof of Step 1: This is clear since
∑∞
j=1(bj − aj) is convergent, by the

assumption that U is bounded. From Lemma 1.5 may conclude

m∗(U) =

∞∑
j=1

(bj − aj) ≤
N∑
j=1

(bj − aj) + ε.

The final parts of step 1 are just there for some book-keeping and should be
clear. Throwing out the intervals (aj , bj) that does not intersect I should not
effect anything and that the complement of U c is closed and have the stated
form is elementary.

We have four different cases to consider:

1. a ∈ [a1, b1] and b ∈ [an, bN ] or

2. a ∈ [a1, b1] and b ∈ [bN ,∞) or

3. a ∈ (−∞, a1] and b ∈ [an, bN ] or

4. a ∈ (−∞, a1] and b ∈ [bN ,∞).

All cases are handled in a very similar fashion so we will assume that we are in
case 2 and leave the other cases to the reader.

Step 2: The following equality holds

m∗(Uε ∩ I) = (b1 − a) +

N∑
j=2

(bj − aj).

Proof of Step 2: Notice that we may write Uε ∩ I as a disjoint union of
intervals:

Uε ∩ I = (a, b1) ∪ (a2, b2) ∪ (a3, b3) ∪ ... ∪ (aN , bN )

Step 2 follows from Lemma 1.5.

Step 3: The following equality holds

m∗(U cε ∩ I) =

N−1∑
j=1

(aj+1 − bj) + (b− bN ).
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Proof of Step 3: Similar to step 2. We may write U cε ∩ I as a disjoint union
of intervals:

Uε ∩ I = (b1, a2) ∪ (b2, a3) ∪ (b3, a4) ∪ ... ∪ (bN , b)

Step 3 follows from Lemma 1.5.

Step 4: For every ε > 0 the following holds

m∗(U ∩ I) +m∗(U c ∩ I) ≤ m∗(I) + ε,

in particular (13) holds. This finishes the proof.

Proof of Step 4: Since U \Uε = ∪∞j=N+1(aj , bj) and
∑∞
j=N+1(bj − aj) < ε it

follows that

m∗(U ∩ I) ≤ m∗(Uε ∩ I) +m∗
(
(∪∞j=N+1(aj , bj)) ∩ I

)
≤

≤ m∗(Uε ∩ I) +m∗
(
(∪∞j=N+1(aj , bj))

)
< m∗(Uε ∩ I) + ε, (14)

where we used sub-additivity and that (∪∞j=N+1(aj , bj)) ∩ I ⊂ (∪∞j=N+1(aj , bj))
(together with the monotonicity of the measure).

Also, by monotonicity of the measure and U c ⊂ U cε ,

m∗(U c ∩ I) ≤ m∗(U cε ∩ I). (15)

From (14) and (15) we conclude that

m∗(U ∩ I) +m∗(U c ∩ I) < m∗(U cε ∩ I) +m∗(Uε ∩ I) + ε =

= (b1 − a) +

N∑
j=2

(bj − aj) +

N−1∑
j=1

(aj+1 − bj) + (b− bN ) + ε = b− a+ ε,

where we used step 2 and 3 in the middle equality.

Proposition 2.1. Every open set U is measurable.

Proof: We need to show that, for any X ⊂ R,

m∗(X ∩ U) +m∗(X ∩ U c) = m∗(X).

By sub-additivity it is enough to show that

m∗(X ∩ U) +m∗(X ∩ U c) ≤ m∗(X), (16)

again we will show the last inequality with an arbitrary small ε error.
Let ε > 0 and find a cover ∪∞j=1Ij of X, Ij = (aj , bj), of X such that

∞∑
j=1

(bj − aj) < m∗(X) + ε, (17)

this we can always do by the definition of m∗(X) as the infimum of all series
such as the left side in (17).

By Lemma 1.1 we may also write U = ∪∞j=1Jj , where Jj = (cj , dj) are
disjoint intervals.

11



Using that X ⊂ ∪jIj , monotonicity of the outer measure and sub-additivity
of m∗ we may calculate

m∗(U ∩X) ≤ m∗ (U ∩ (∪jIj)) ≤
∞∑
j=1

m∗(U ∩ Ij). (18)

And similarly

m∗(U c ∩X) ≤
∞∑
j=1

m∗(U c ∩ Ij) (19)

From (18) and (19) we may conclude that

m∗(U ∩X) +m∗(U c ∩X) ≤
∞∑
j=1

m∗(U ∩ Ij) +

∞∑
j=1

m∗(U c ∩ Ij) = (20)

=

∞∑
j=1

(m∗(U ∩ Ij) +m∗(U c ∩ Ij)) .

From Lemma 2.1 we may conclude that

∞∑
j=1

(m∗(U ∩ Ij) +m∗(U c ∩ Ij)) =

∞∑
j=1

m∗(Ij) =

∞∑
j=1

(bj−aj) < m∗(X)+ε, (21)

where we also used (17) in the last inequality.
From (20) and (21) we can conclude that

m∗(U ∩X) +m∗(U c ∩X) < m∗(X) + ε.

Since ε > 0 is arbitrary this proves (16) and finishes the proof of the proposition.

Corollary 2.1. Every closed set is measurable.

Proof: Since closed sets are complements of open sets and the definition
of measurable is symmetric w.r.t. the complement this follows directly from
Proposition 2.1.

In order to get a rich enough class of measurable sets to show that the
integral has good convergence properties it is not enough to show that all the
open and all the closed sets are measurable. We will need to show that null sets
are measurable as well. First we need to define the concept of null sets.

Definition 2.1. We say that a set A ⊂ R is a null set if

m∗(A) = 0.

Proposition 2.2. All the null sets are measurable.

Proof: Let A be a null set then, by the monotonicity of the outer measure,
m∗(X ∩A) ≤ m∗(A) = 0 and m∗(X ∩Ac) ≤ m∗(X). This clearly implies that

m∗(X ∩A) +m∗(X ∩Ac) ≤ m∗(X).

The reverse inequality follows from sub-additivity.
Next we will show that m∗ is countably additive on measurable sets: if

Aj , j ∈ N, is a countable collection of disjoint and measurable sets. Then
m∗(∪∞j=1Aj) =

∑∞
j=1m

∗(Aj). Again this requires some work. We begin by
showing that m∗ is finitely additive on disjoint and measurable sets.

12



Lemma 2.2. [Finite additivity] Let Aj, j = 1, 2, ..., N , be a finite collection
of disjoint measurable sets. Then

m∗(∪Nj=1Aj) =

N∑
j=1

m∗(Aj).

Proof: By induction on N . We start with the base case, N = 2, then
we define X = A1 ∪ A2. By the definition of measurable, using that A2 is
measurable, it follows that

m∗(A1 ∪A2) = m∗(X) = m∗(X ∩A2︸ ︷︷ ︸
=A2

) +m∗(X ∩Ac2︸ ︷︷ ︸
=A1

) = m∗(A2) +m∗(A1),

the Lemma follows for N = 2.
Assume that the lemma holds for all measurable and disjoint collections Aj ,

j = 1, 2, ..., N , we want to show that for any collection Aj , j = 1, 2, ..., N + 1,
of disjoint and measurable sets

m∗(∪N+1
j=1 Aj) =

N+1∑
j=1

m∗(Aj). (22)

We argue as in the base case and define X =
(
∪Nj=1Aj

)
∪ AN+1. Then, since

AN+1 is measurable,

m∗
((
∪Nj=1Aj

)
∪AN+1

)
= m∗(X) = m∗(X ∩AN+1︸ ︷︷ ︸

=AN+1

) +m∗(X ∩AcN+1︸ ︷︷ ︸
=∪N

j=1Aj

) =

= m∗(AN+1) +m∗
(
∪Nj=1Aj

)
=

N+1∑
j=1

m∗(Aj),

where we used that m∗
(
∪Nj=1Aj

)
=
∑N
j=1m

∗(Aj) by the induction hypothesis
in the last equality. The lemma follows by induction.

We are now ready to prove countable additivity.

Proposition 2.3. [Countable Additivity.] Let Aj, j = 1, 2, 3, ..., be a
countable collection of disjoint measurable sets. Then

m∗(∪∞j=1Aj) =

∞∑
j=1

m∗(Aj).

Proof: Again by sub-additivity of the measure it is enough to prove that

∞∑
j=1

m∗(Aj) ≤ m∗
(
∪∞j=1Aj

)
. (23)

By monotonicity of the measure it follows that

m∗
(
∪∞j=1Aj

)
≥ m∗

(
∪Nj=1Aj

)
=

N∑
j=1

m∗(Aj). (24)

13



Passing to the limit N →∞ in (24) gives (23).
We also need to show that the measurable sets M forms a σ−algebra. By

the definition of measurable sets, in particular by the symmetry in taking com-
plements it is clear that A ∈M⇒ Ac ∈M. Also that ∅ ∈ M (since ∅ is a null
set) and that R ∈M (since R = ∅c) is clear. We will however have to show that
if Aj ∈ M, j ∈ N, then ∪∞j=1Aj ∈ M. This will require some work. We begin
with a lemma.

Lemma 2.3. If Aj ∈M, j = 1, 2, ..., N , then ∪Nj=1Aj ∈M.

Proof: We will prove this by induction on N . We begin with the base case
N = 2.

To no ones surprise (I hope) it is, by sub-additivity, enough to show the
inequality

m∗ ([A1 ∪A2] ∩X) +m∗ ([A1 ∪A2]c ∩X) ≤ m∗(X),

for any set X ⊂ R.
In order to show this we use that A1 is measurable and calculate

m∗(X) = m∗(X ∩A1) +m∗(X ∩Ac1) =

= m∗(X ∩A1) +m∗ ([X ∩Ac1] ∩A2) +m∗ ([X ∩Ac1] ∩Ac2) , (25)

where we used that A2 is measurable in the last equality, which implies that

m∗(X ∩Ac1) = m∗ ([X ∩Ac1] ∩A2) +m∗ ([X ∩Ac1] ∩Ac2) .

In order to continue we use sub-additivity on the first two terms on the right
in (25)

m∗(X ∩A1) +m∗ ([X ∩Ac1] ∩A2) ≥

≥ m∗ ([X ∩A1] ∪ [(X ∩Ac1) ∩A2]) = m∗ (X ∩ [A1 ∪A2]) , (26)

where we used the equality

[X ∩A1] ∪ [(X ∩Ac1) ∩A2] = X ∩ [A1 ∪A2]

in the last step of the calculation. We also rewrite the last term in (25) as

m∗ ([X ∩Ac1] ∩Ac2) = m∗ (X ∩ [A1 ∪A2]
c
) . (27)

Using (26) and (27) in (25) we can conclude that for any set X ∈ R

m∗(X) ≥ m∗ (X ∩ [A1 ∪A2]) +m∗ (X ∩ [A1 ∪A2]
c
) ,

which implies that A1 ∪A2 is measurable.
The induction step is easy. Given sets Aj , j =, 2, ..., N + 1, and assuming

that then lemma holds for all collections consisting of at most N sets we can
conclude that

∪Nj=1Aj =
(
∪Nj=1Aj

)︸ ︷︷ ︸
∈M

⋃
AN+1 ∈M,

since the first union to the right is measurable by the induction hypothesis.
We can now prove that M is closed under countable unions.
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Proposition 2.4. Let Aj ∈M, j = 1, 2, 3, ..., then A = ∪∞j=1Aj ∈M.

Proof: As always we only need to show that

m∗(X) ≥ m∗(X ∩A) +m∗(X ∩Ac).

The trick is to write A as a countable disjoint union (in order to use additivity
of the measure). To that end we recursively define T1 = A1 and Tn = An \
∪n−1j=1 Tj . Then each Tj is measurable since An is and, by Lemma 2.3, ∪n−1j=1 Tj
is. We also define Ln = ∪nj=1Tj = ∪nj=1Aj , which is also measurable by Lemma
2.3. Therefore

m∗(X) = m∗(X ∩ Ln) +m∗(X ∩ Lcn) ≥ m∗(X ∩ Ln) +m∗(X ∩Ac), (28)

by the monotonicity of the measure since X∩Ac ⊂ X∩Lcn. Using the definition
of Ln in (28) we conclude that

m∗(X) ≥ m∗
(
X ∩ (∪nj=1Tj)

)
+m∗(X ∩Ac). (29)

Since Tn is measurable we may calculate

m∗
(
X ∩ (∪nj=1Tj)

)
=

= m∗
( [
X ∩ (∪nj=1Tj)

]
∩ Tn︸ ︷︷ ︸

=X∩Tn

)
+m∗

( [
X ∩ (∪nj=1Tj)

]
∩ T cn︸ ︷︷ ︸

=X∩(∪n−1
j=1 Tj)

)
=

= m∗
(
X ∩ Tn

)
+m∗

(
X ∩ (∪n−1j=1 Tj)

)
= {repeat} =

n∑
j=1

m∗(X ∩ Tj),

where the first two equalities shows how to “move out ” Tn from the measure
and the “repeat” just indicates that we do the same argument again to “move
out” Tn−1 and then Tn−1 et.c. Using the last equality in (29) we can conclude
that

m∗(X) ≥
n∑
j=1

m∗(X ∩ Tj) +m∗(X ∩Ac). (30)

Letting n→∞ in (30) we get

m∗(X) ≥
∞∑
j=1

m∗(X ∩ Tj) +m∗(X ∩Ac). (31)

But A = ∪∞j=1Aj = ∪∞j=1Tj and thus by sub-additivity

m∗(X ∩A) = m∗
(
X ∩

(
∪∞j=1Tj

))
=

= m∗
(
∪∞j=1 (X ∩ Tj)

)
≤
∞∑
j=1

m∗(X ∩ Tj). (32)

Inserting (32) in (31) we can conclude that

m∗(X) ≥ m∗(X ∩A) +m∗(X ∩Ac).

The proposition follows.
Let us formulate the main results we have proven this far in a theorem.
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Theorem 2.1. The Lebesgue measure m, that is the outer Lebesgue measure
m∗ restricted to the collection of measurable setsM, is a non-negative countable
additive function.

Furthermore, the collection of measurable sets M forms a σ−algebra.

This is terribly abstract and at this point it might be difficult to see if it
was worth it to go through many very technical proofs in order to derive a this
theorem. It is hardly the kind of theorem whose statement makes its applications
obvious. In the next lecture we will see that this theorem is exactly what we
need in order to define a versatile integral that behaves well under limits. And
it is only when proving the theorems for the integral we will be able to see that
the theory developed this far is right.

Before we define the integral it will be good to gain a little better under-
standing of what a measurable set is and how general or bad it can be. We will
also need a “continuity” result for measures. We will begin to show that any
measurable set can be written as the intersection of countable many open sets
and a null set.

Proposition 2.5. Let A ⊂ R be any set, then there exists a set B =
⋂∞
j=1 Uj,

where Uj are open sets and A ⊂ B, such that

m∗(A) = m∗(B). (33)

If A is measurable then
m∗(B \A) = 0,

in particular any measurable set differs from the intersection of countably many
open sets by a null set.

Proof: For a general set A it follows directly from the definition of the outer
measure m∗ that there exists an open set Uj such that A ⊂ Uj

m∗(Uj) ≤ m∗(A) +
1

j
, (34)

We may assume that

... ⊂ Uj ⊂ Uj−1 ⊂ ... ⊂ U1. (35)

If not we may define Ũ1 = U1 and inductively Ũj = Uj ∩ Ũj−1, then Ũj ⊂ Ũj−1
will satisfy (35). The sets Ũj will also satisfy (34), by the monotonicity of the

measure and from A ⊂ Ũj ⊂ Uj .
By monotonicity of the measure, (35) and (34) it follows that B = ∩∞j=1Uj

satisfies

m∗(A) ≤ m∗(B) ≤ m∗(Uj) ≤ m∗(A) +
1

j

for any j ∈ N. This implies (33).
If A is measurable then it follows from the definition of measurable, A ⊂ B

and (33) that

m(A) = m(B) = m(B ∩A) +m(B \A) = m(A) +m(B \A),

subtracting m(A) from both sides gives m(B \A) = 0.
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The decomposition in the previous proposition is very powerful, and exact,
but it is based on an possibly infinite intersection. At times it might be beneficial
to have a finitary approximation of a measurable set. We provide such a finite
approximation in the next proposition.

Proposition 2.6. Assume that A is bounded and measurable. Then, for any
ε > 0, there exists a finite union of open intervals U = ∪Nj=1(aj , bj) such that

m(A∆U) < ε,

here ∆ is denotes the symmetric difference A∆U = (A \ U)
⋃

(U \A).

Proof: If A is measurable then there exists an open set Û = ∪∞j=1(aj , bj)

such that A ⊂ Û and
m(Û) < m(A) +

ε

2
.

Choose N large enough so that

m(Û) <

N∑
j=1

(bj − aj) +
ε

2

and define U = ∪Nj=1(aj , bj). Then using sub-additivity and monotonicity

m(A∆U) ≤ m(A \ U︸ ︷︷ ︸
⊂Û\U

) +m(U \A︸ ︷︷ ︸
⊂Û\A

) ≤ m(Û \ U) +m(Û \A) <
ε

2
+
ε

2
= ε.

The final result of this lecture is

Proposition 2.7. [Continuity of the Measure] If Aj is a countable col-
lection of measurable sets then

1. if Aj ⊂ Aj+1 and A = ∪∞j=1Aj then

m(A) = lim
j→∞

m(Sj). (36)

2. if Aj+1 ⊂ Aj, m(A1) <∞, and A = ∩∞j=1Aj then

m(A) = lim
j→∞

m(Sj). (37)

Proof: We begin with the first statement and assume that Aj ⊂ Aj+1. We
construct the disjoint sets Bj = Aj \ Aj−1 (taking A0 = ∅) then Bj forms a

disjoint measurable collection and A = ∪∞k=1Bk and Aj = ∪jk=1Bk.
By countable additivity for the measure we may calculate

lim
j→∞

m(Aj) = lim
j→∞

m(∪jk=1Bk) = lim
j→∞

j∑
k=1

m(Bk) =

=

∞∑
k=1

m(Bk) = m(∪∞k=1Bk) = m(A).

17



This proves the first statement.
The second part follows from the first part. Notice that the sets Cj = A1\Aj

forms an increasing sequence of measurable sets and ∪∞j=1Cj = A1 \ A. Using
that all sets are measurable and (36) (with Cj in place of Aj) at the indicated
place we can derive that

m(A1)−m(A) = m(A1 \A) = {(36)} = lim
j→∞

m(Cj) =

= lim
j→∞

(m(A1)−m(Aj)) = m(A1)− lim
j→∞

m(Aj).

The statement (37) follows by canceling m(A1) and multiplying by −1.
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