
KTH ROYAL INSTITUTE
OF TECHNOLOGY

Global state
Johan Montelius and Vladimir Vlassov

Global state
Time is very much related to the notion of global state.

If we cannot agree on a time, how should we agree on a global state?

Global state is important:
• Garbage collection
• Dead-lock detection
• Termination
• Debugging

2 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

Presenter
Presentation Notes
Distributed garbage collection: An object is considered to be garbage if there are no longer any references to it anywhere in the distributed system. The memory taken up by that object can be reclaimed once it is known to be garbage. To check that an object is garbage, we must verify that there are no references to it anywhere in the system including outstanding messages in commination channels that may carry a reference to an object that is not references by any process.
Distributed deadlock detection: A distributed deadlock occurs when each of a collection of processes waits for another process to send it a message, and where there is a cycle in the graph of this ‘waits-for’ relationship.
Distributed termination detection: The problem here is how to detect that a distributed algorithm has terminated, i.e. all processing are passive (or idle) and there are no outstanding messages in channels to be received and processed by an idle destination.

Global state
Given a partial order of events, can we say anything about
the state of the system?

3 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

p0 p1 p2 p3

q0 q1 q2 q3

r0 r1 r2

History and state
The history of a process is a sequence of events: <p0, p1, ..pn>

The state of a process is a description of the process after (before) an
event.

4 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

p0 p1 p2 p3

Presenter
Presentation Notes
We said above that a series of events occurs at each process, and that we may characterize the execution of each process by its history: as a sequence of all events which causes state transitions of the process. Similarly, we may consider any finite prefix of the process’s history as a final sequence of everts up to some specific event. Each event either is an internal action of the process (for example, the updating of one of its variables), or is the sending or receipt of a message over the communication channels that connect the processes.
We noted in the examples above that the state of the communication channels is sometimes relevant. Rather than introducing a new type of state, we make the processes record the sending or receipt of all messages as part of their state. If a message was sent but have not been received yet we can infer whether or not the message is part of the state of the channel between the sender and the receiver.

Global state

Is the state of a process the history of events?

What is the global state of a distributed system?

The union of histories of all processes?

Do all unions make sense?

5 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

Presenter
Presentation Notes
We can also form the global history of a system of processes as the union of the individual process histories. Mathematically, we can take any set of states of the individual processes to form a global state. But which global states are meaningful – that is, which process states could have occurred at the same time? A global state corresponds to initial prefixes of the individual process histories.

Global history and cut
A cut is a subset in the global history up to a specific event in each history.

6 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

p0 p1 p2 p3

q0 q1 q2 q3

r0 r1 r2

An event is in the cut if it belongs to the events of a history up to the specific
event.

Presenter
Presentation Notes
A cut of the system’s execution is a subset of its global history that is a union of prefixes of process histories. The state of a process in the global state corresponding to a cut is a state of the process immediately after the last event processed by the process in the cut. The set of the last events corresponding to the cut is called the frontier of the cut.

All cuts are equal, but ...

7 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

p0 p1 p2 p3

q0 q1 q2 q3

r0 r1 r2

Presenter
Presentation Notes
The red cut is inconsistent. This is because at process q it includes the receipt of a message from p , but at p it does not include the sending of that message. This is showing an “effect” (receipt) without a “cause” (sending). The actual execution never was in a global state corresponding to the process states at that frontier (red cut), and we can in principle tell this by examining the “happened before“ relation between events.
By contrast, the green cut is consistent. It includes both the sending and the receipt of a message (p1 -> q2) and the sending but not the receipt of a message from r1 . That is consistent with the actual execution – after all, the message took some time to arrive. Similarly, the blue cut is also consistent.

..some are more equal ..

8 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

p0 p1 p2 p3

q0 q1 q2 q3

r0 r1 r2

Presenter
Presentation Notes
The green cut is consistent. It includes both the sending and the receipt of a message (p1 -> q2) and the sending but not the receipt of a message from r1 . That is consistent with the actual execution – after all, the message took some time to arrive. Similarly, the blue cut is also consistent.

.. than others

9 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

p0 p1 p2 p3

q0 q1 q2 q3

r0 r1 r2

Presenter
Presentation Notes
The red cut is inconsistent. This is because at process q it includes the receipt of a message from p , but at p it does not include the sending of that message. This is showing an “effect” (receipt) without a “cause” (sending). The actual execution never was in a global state corresponding to the process states at that frontier (red cut), and we can in principle tell this by examining the “happened before“ relation between events.

Consistent cuts
For each event e in the cut:
• if f happened before e then
• f is also in the cut.

10 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

p0 p1 p2 p3

q0 q1 q2 q3

r0 r1 r2

Presenter
Presentation Notes
In other words, a cut C is consistent if, for each event it contains, it also contains all the events that happened-before that event.

Consistent global state
A consistent cut corresponds to a consistent global state.

• it is a possible state without contradictions
• the actual execution might not have passed through the

state

11 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

Presenter
Presentation Notes
We may characterize the execution of a distributed system as a series of transitions between global states of the system. In each transition, precisely one event occurs at some single process in the system. This event is either the sending of a message, the receipt of a message or an internal event. If two events happened simultaneously, we may nonetheless deem them to have occurred in a definite order – say, ordered according to process identifiers. (Events that occur simultaneously must be concurrent: neither happened-before the other.) A system evolves in this way through consistent global states.

Consistent, but not actual states

12 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

p0 p1 p2 p3

q0 q1 q2 q3

r0 r1 r2

All real time cuts are consistent, but who knows the real time?

Linearization
• A run is a total ordering of all events in a global history

that is consistent with each local history.

• A linearization or consistent run is a run that describes
transitions between consistent global states.

• A state S’ is reachable from state S if there is a
linearization from S to S’.

13 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

Presenter
Presentation Notes
In other words, a linearization or consistent run is an ordering of the events in a global history that is consistent with this happened-before relation on the global history. Note that a linearization is also a run. Not all runs pass through consistent global states, but all linearizations pass only through consistent global states.
Sometimes we may alter the ordering of concurrent events within a linearization, and derive a run that still passes through only consistent global states. For example, if two successive events in a linearization are the receipt of messages by two processes, then we may swap the order of these two events.

Linearization

14 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

p0 p1 p2 p3

q0 q1 q2 q3

r0 r1 r2

Possible state transitions
[p0, p1, q0, r0, q1, r1, p2, p3, q2, r2, q3]

15 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

Possible state transitions
[q0, p0, p1, r0, q1, r1, p2, p3, q2, r2, q3]

16 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

Possible paths

Each path is a consistent run, a linearization, one of which the execution
actually took.

17 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

Why is this important?
• If we can collect all events and know the happened before

order, then we can construct all possible linearizations.
• We know that the actual execution took one of these

paths.
• Can we say something about the execution even though

we do not know which path that was taken?

18 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

Global state predicate
A global state predicate is a property that is true or false for a
global state.

• Safety - a predicate is never (or always) true in any state.
• Liveness - a predicate that eventually evaluates to true.

How do we determine if a property holds in an execution?

19 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

Presenter
Presentation Notes
A global state predicate is a function that maps from the set of global states of processes in the system to {True, False}. One of the useful characteristics of the predicates associated with the state of an object being garbage, of the system being deadlocked or the system being terminated is that they are all stable: once the system enters a state in which the predicate is True, it remains True in all future states reachable from that state. By contrast, when we monitor or debug an application we are often interested in non-stable predicates, such as that in our example of variables whose difference is supposed to be bounded. Even if the application reaches a state in which the bound obtains, it need not stay in that state.

Let’s capture all linearizations
Idea - use vector clocks, collect all events of the execution.

20 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

Construct all linearizations

21 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

s{0,0} start s{1,0}

s{0,1}

p0

q0

s{1,1}

q0

p0

s{2,0}

s{2,1}

p1

p1

q0

s{2,2}

q1

An execution lattice

Any path is a linearization.
The actual execution took one path.

22 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

Possibly true

If a predicate is true in a consistent global state of the lattice,
then it is possibly true in the execution.

23 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

Definitely true

If we cannot find a path from the initial state to the final state without
reaching a state for which a predicate is true then the predicate is
definitely true during the execution.

24 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

Stable and non-stable
We differentiate between:

• Stable: if a predicate is true it remains true for all
reachable states

• Non-stable: if a predicate can become true and then
later become false

25 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

Stable is good
What do I know if a stable predicate is true for state S{2,1}?

26 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

Let’s capture a possible state
Idea: capture a consistent global state that was possibly true
in the execution.
If a stable predicate is true for this state - then it is true in the
actual execution.

How do we capture a state?

27 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

Snapshot - Chandy and Lamport
A node initiates a snapshot when it receives a marker.

• Record the local state and
• send a marker on all out going channels.
• Record all incoming messages on each channel, ..
• until you receive a marker.
• When the last channel is closed you have a local and a

set of messages.
Ask one node to initiate the snapshot, collect all local states
and messages and construct a global state.

28 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

Snapshot markers

What messages are collected by which node?

29 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

p0 p1 p2 p3

q0 q1 q2 q3

r0 r1 r2

Snapshot markers

What messages are collected by which node?

30 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE

p0 p1 p2 p3

q0 q1 q2 q3

r0 r1 r2

Snapshot
• Allows us to collect a global state during execution.
• Only allows us to determine stable predicates.

31 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE
30 / 31

Summary
The happened before order gives us consistent cuts or
consistent global states.

Using vector clocks we can time stamp states, construct all
possible linearizations and evaluate if predicates hold true in
the execution.

A snapshot can record a consistent state that can be used to
evaluate stable predicates.

32 ID2201 DISTRIBUTED SYSTEMS / GLOBAL STATE
31 / 31

	Global state
	Global state
	Global state
	History and state
	Global state
	Global history and cut
	All cuts are equal, but ...
	..some are more equal ..
	.. than others
	Consistent cuts
	Consistent global state
	Consistent, but not actual states
	Linearization
	Linearization
	Possible state transitions
	Possible state transitions
	Possible paths
	Why is this important?
	Global state predicate
	Let’s capture all linearizations
	Construct all linearizations
	An execution lattice
	Possibly true
	Definitely true
	Stable and non-stable
	Stable is good
	Let’s capture a possible state
	Snapshot - Chandy and Lamport
	Snapshot markers
	Snapshot markers
	Snapshot
	Summary

