PROBLEM SET B

1. Consider the Poisson equation:

$$
\begin{array}{rl}
-\Delta u(x)=1 & x \in \Omega \\
u(x)=0 & x \in \Gamma
\end{array}
$$

a) Derive a variational formulation for the Poisson equation: Find $u \in V$ such that

$$
a(u, v)=L(v), \quad \text { for all } v \in V
$$

Define the Hilbert space $V=H_{0}^{1}(\Omega)$, and its associated norm $\|\cdot\|_{V}$, and define the bilinear form $a: V \times V \rightarrow \mathbb{R}$ and the linear form $L: V \rightarrow \mathbb{R}$.
a) Prove that there are constants $\kappa_{1}>0, \kappa_{2}, \kappa_{3}$, such that for all $v, w \in V$:

$$
a(v, v) \geq \kappa_{1}\|v\|_{V}^{2}, \quad|a(v, w)| \leq \kappa_{2}\|v\|_{V}\|w\|_{V}, \quad|L(v)| \leq \kappa_{3}\|v\|_{V}
$$

and that there exists a unique solution u to the variational problem.
c) Formulate an abstract Galerkin method with solution U, in terms of the bilinear and linear forms, using a finite dimensional subspace $V_{h} \subset V$.
d) Prove that

$$
\|u-U\|_{V} \leq \frac{\kappa_{2}}{\kappa_{1}}\|u-v\|_{V}, \quad \text { for all } v \in V_{h}
$$

2. For $a(x)>0$ and $c(x) \geq 0$, consider the problem:

$$
-\left(a(x) u^{\prime}(x)\right)^{\prime}+c(x) u(x)=f(x), \quad x \in(0,1), \quad u(0)=u(1)=0
$$

a) Formulate the $\mathrm{cG}(1)$ method for the problem (FEM with a continuous piecewise linear approximation on a subdivision \mathcal{T}_{h} of $\left.(0,1)\right)$.
b) Prove the a posteriori error estimate:

$$
\int_{0}^{1}(u-U) \xi d x \leq C_{i}\left\|h^{2} R(U)\right\|_{L_{2}(0,1)}\left\|\varphi^{\prime \prime}\right\|_{L_{2}(0,1)}
$$

where U is the $\mathrm{cG}(1)$ solution, and φ is the solution to the dual problem:

$$
-\left(a(x) \varphi^{\prime}(x)\right)^{\prime}+c(x) \varphi(x)=\xi(x), \quad x \in(0,1), \quad \varphi(0)=\varphi(1)=0
$$

3. Consider the heat equation:

$$
\begin{array}{rr}
\dot{u}(x, t)-\Delta u(x, t)=f(x, t), & (x, t) \in \Omega \times(0, T] \\
u(x, t)=0, & (x, t) \in \Gamma \times(0, T] \\
u(x, 0)=u^{0}(x), & x \in \Omega
\end{array}
$$

Prove that:

$$
\frac{d}{d t}\|u\|^{2}+\|\nabla u\|^{2} \leq C\|f\|^{2}
$$

where $C>0$ is the constant in the Poincaré-Friedrich inequality.

