Loggy: a logical time logger
Johan Montelius and Vladimir Vlassov

August 29, 2016

Introduction

In this exercise you will learn how to use logical time in a practical example.
The task is to implement a logging procedure that receives log events from
a set of workers. The events are tagged with the Lamport time stamp of
the worker and the events must be ordered before written to stdout. It’s
slightly more tricky than one might first think.

1 A first try

To have something to start from we will first build a system that at least
does something.
1.1 the logger

The logger simply accepts events and prints them on the screen. It will be
prepared to receive time-stamps on the messages but we will not do very
much with them now.

-module (logger) .
-export ([start/1, stop/1]).

start (Nodes) ->
spawn_link(fun() ->init(Nodes) end).

stop(Logger) ->
Logger ! stop.

init(l) ->
loop().

The logger is given a list of nodes that will send it messages but for now
we simply ignore this. We might use it later when we extend the logger.

loop() —>
receive
{log, From, Time, Msg} ->



log(From, Time, Msg),
loop();
stop —>
ok
end.

log(From, Time, Msg) ->
io:format("log: “w "w "p™n", [Time, From, Msgl).

Erlang will give us a FIFO order for message delivery but this only orders
messages in between two processes. If a process A sends a message to the
logger and then sends a message to process B, process B can act on the
message from A and then send a message to the logger. We would of course
like to have the log message from A to be printed before the message from
B but there is nothing that guarantees that this will happen (unfortunate
for this tutorial you will have to run extensive tests before you detect this
in real life, we could however introduce some delay in the system to increase
the probability).

2 the worker

The worker will be very simple, it will wait for a while and then send a
message to one of its peers. While waiting, it is prepared to receive messages
from peers so if we run several workers and connect them with each other
we will have messages randomly being passed between the workers.

To keep track of what is happening and in what order things are done
we send a log entry to the logger every time we send or receive a message.
Note that the original version of the worker will not keep track of logical
time, it will simply send events to the logger.

The worker is given a unique name and access to the logger. We also
provide the worker with a unique value to seed its random generator. If
all workers started with the same random generator they would be more in
sync, more predictable and less fun. We also provide a sleep and jitter value;
the sleep value will determine how active the worker is sending messages, the
jitter value will introduce a random delay between the sending of a message
and the sending of a log entry.

-module (worker) .
-export([start/5, stop/1, peers/2]).

start (Name, Logger, Seed, Sleep, Jitter) ->
spawn_link(fun() -> init(Name, Logger, Seed, Sleep, Jitter) end).



stop(Worker) ->
Worker ! stop.

init(Name, Log, Seed, Sleep, Jitter) ->
random:seed(Seed, Seed, Seed),
receive
{peers, Peers} ->
loop(Name, Log, Peers, Sleep, Jitter);
stop —>
ok
end.

The upstart phase in init/2 looks odd but it is there so that we can
start all workers and then inform them who their peers are. If we would
have given the list of peers when the worker was started we could have a
race condition where a worker is sending messages to workers that have not
yet been created. For convenience we provide a functional interface.

peers(Wrk, Peers) ->
Wrk ! {peers, Peers}.

The worker process is quite simple. The process will wait for either a
message from one of its peers or after a random sleep time select a peer
process that is sent a message. The worker does not know about time so
we simply create a dummy value, na, in order to have something to pass
to the logger. The messages could of course contain anything but here we
include a hopefully unique random value so that we can track the sending
and receiving of a message.

loop(Name, Log, Peers, Sleep, Jitter)->
Wait = random:uniform(Sleep),
receive
{msg, Time, Msg} ->
Log ! {log, Name, Time, {received, Msg}},
loop(Name, Log, Peers, Sleep, Jitter);
stop —>
ok;
Error ->
Log ! {log, Name, time, {error, Error}}
after Wait ->
Selected = select(Peers),
Time = na,
Message = {hello, random:uniform(100)},
Selected ! {msg, Time, Messagel},



jitter(Jitter),
Log ! {log, Name, Time, {sending, Messagel}},
loop(Name, Log, Peers, Sleep, Jitter)

end.

The selection of which peer to send a message to is random and the
jitter introduces a slight delay between sending the message to the peer and
informing the logger. If we don’t introduce a delay here we would hardly
ever have messages occur out of order when running in the same virtual
machine.

select (Peers) ->
lists:nth(random:uniform(length(Peers)), Peers).

jitter(0) -> ok;
jitter(Jitter) -> timer:sleep(random:uniform(Jitter)).

3 the test

If we have the worker and the logger we can set up a test to see that things
work.

-module(test).
-export ([run/2]) .

report on your initial observations

run(Sleep, Jitter) ->
Log = logger:start([john, paul, ringo, georgel),
A = worker:start(john, Log, 13, Sleep, Jitter),
B = worker:start(paul, Log, 23, Sleep, Jitter),
C = worker:start(ringo, Log, 36, Sleep, Jitter),
D = worker:start(george, Log, 49, Sleep, Jitter),
worker:peers(A, [B, C, D]),
worker:peers(B, [A, C, D]),
worker:peers(C, [A, B, D]),
worker:peers(D, [A, B, C]),
timer:sleep(5000),
logger:stop(Log),
worker:stop(4),
worker:stop(B),
worker:stop(C),
worker:stop(D).



This is only one way of setting up a test case. As you see we start by
creating the logging process and four workers. When the workers have been
created we send them a message with their peers.

Run some tests and try to find log messages that are printed in the wrong
order. How do you know that they are printed in the wrong order? Experi-
ment with the jitter ans see if you can increase or decrease (eliminate?) the
number of entries that are wrong.

4 Lamport Time

Your task now is to introduce logical time to the worker process. It should
keep track of its own counter and pass this along with any message that
it sends to other workers. When receiving a message the worker must up-
date its timer to the greater of its internal clock and the time-stamp of the
message before increment its clock.

In order to compare our solutions, and also change it in an interesting
way, you should implement the handling of the Lamport clocks in a separate
module time. This module should contain the following functions:

e zero() : return an initial Lamport value (could it be 0)

e inc(Name, T) : return the time T incremented by one (you will prob-
ably ignore the Name but we will use it later)

e merge(Ti, Tj) : merge the two Lamport time stamps (i.e. take the
maximum value)

e leq(Ti,Tj) : true if Ti is less than or equal to Tj

Make sure that the worker module only use this API and does not contain
any knowledge of how you choose to represent Lamport time (which might
be as simple as 0,1,2,..). We might want to change the representation later
and then only have to work with the time module.

Do some tests and identify situations where log entries are printed in the
wrong order. How do you identify messages that are in the wrong order?
What is always true and what is sometimes true? How do you play it safe?

4.1 The tricky part

Now for the tricky part. If the logger would just collect all log messages
and save them for later, one could wait with the ordering until all messages
had been received. If we do want to print messages to a file or stdout in
the correct order but during the execution we must take care not to print
anything too early.



We must somehow keep a hold-back queue of messages that we can not
yet deliver because we do not know if we will receive a message with an
earlier time stamp. How do we know if messages are safe to print?

This sounds easy, and it is of course once you get it right, but there will
be things that you forget to cover before you get it right. There are some
ways to solve this but we should follow these guide lines to later do some
changes to the implementation.

The logger should have a clock that keeps track of the timestamps of the
last messages seen from each of the workers. It should also have a hold-back
queue where it keeps log messages that are still no safe to print. When a
new log message arrives it should update the clock, add the message to the
hold-back queue and then go through the queue to find messages that are
now safe to print.

Extend the time module so that it also implements the following func-
tions:

e clock(Nodes) : return a clock that can keep track of the nodes

e update(Node, Time, Clock) : return a clock that has been updated
given that we have received a log message from a node at a given time

e safe(Time, Clock) : is it safe to log an event that happened at a given
time, true or false

The logger should only use the API from the time module, there should
be no knowledge of how the Lamport time nor the clock is represented. If
you do it right you should later be able to change the representation without
changing the logger.

5 Requirements to pass the homework assignment

To pass this homework assignment, you have to implement the worker and
logger process. The worker keeps track of the logical time and updates it
as it sends and receives messages. The logger keeps a hold-back queue with
messages that it has not printed yet. When messages are printed they should
be in the right order.

You are also to write a report that describes your time module (please
don’t give me a page of source code, describe in your own words). Did you
detected entries out of order in the first implementation and if so, how did
you detect them. What is it that the final log tells us? Did events happen
in the order presented by the log? How large will the hold back queue be,
make some tests and try to find the maximum number of entries.

You present and demonstrate your homework in person to a course teach-
ing assistant at a reporting seminar



6 Optinal Task for extra bonus: Vector clocks

How would things be different with vector clocks? This is a very interesting
issue. If you think the homework was easy, try to implement vector clocks
as an optional task for extra bonus. You will find that it’s not that difficult
and it does actually give you some benefits.



