Types, Semantics, and Programming Languages
(1K3620)

Exercises for Module 2

Typed lambda calculus with extensions
Version 1.0

David Broman
KTH Royal Institute of Technology
dbro@kth.se

August 29, 2016

dbro@kth.se

Contents

2 Simply Typed Lambda Calculus and Type Safety|
2.1 Typed Arithmetic Expressions

2.2 Sim yped Lambda Calculus|
P33 TypeSafetyl

2.4 Curry-Howard Correspondence]|

[3__Extensions for Creating Programming Languages|
3.1 Simple Extensions| oo oL
13.2 Lists, References, and Exceptions|

N DN

B W o W

S Ot Ot ot ot G

Chapter 1

Introduction

Welcome to the second course module for the course Types, Semantics, and
Programming Languages (IK3620). In this module you will learn about type
systems, the simply typed lambda calculus, and various extensions that are
typically needed when creating a real programming language.

1.1 Submit your solutions

Please see the course website about deadlines and details of how to submit the
solutions. http://www.kth.se/social/group/ik3620/

1.2 Resources

The main resource for module 2 is the TAPL book by Pierce [1]. Please read
chapters 8 to 14 carefully.

http://www.kth.se/social/group/ik3620/

Chapter 2

Simply Typed Lambda
Calculus and Type Safety

2.1 Typed Arithmetic Expressions
Task

Consider the syntax and semantics for the typed arithmetic expression language,
defined in TAPL on the pages 34, 41, and 93. For each of the terms below,
answer the following questions:

1. What is the typing derivation of the term? Show the tree.
2. Is the term well typed?
3. What is the type of the term?

4. What is the final normalized value of the term when no more evaluation
steps can be taken?

5. Is the normalized term stuck? Why, why not?

6. If the term is not well typed, discuss if this is due to that the type system
is conservative. Also, for not well typed terms, propose a type rule that
would make the term typable. Discuss if this is a good idea or not.

Terms:
1. iszero (if true then pred 0 else succ 0)
2. iszero (pred true)
3. succ (succ (if iszero 0 then 0 else succ 0))
4

. 1f iszero (pred 0) then true else succ O

2.2 Simply Typed Lambda Calculus

Task
Perform TAPL exercise 9.2.2 on page 103.

Task

Extend your big-step operational evaluator that has de Bruijn index (Module
1, Exercise 7.2) with the simply typed lambda calculus. The type checker must
reject terms that are not well typed.

2.3 Type Safety

Task

Perform TAPL exercise 9.3.9 on page 107. You must write out the proof in
detail, explaining every step, every lemma you use, all assumptions you use etc.

Hint: Go through the proofs in TAPL Chapter 8 and the proof of progress in
Chapter 9 in detail before you try to solve the task above. You learn much more
by writing out all the steps yourself than just reading the steps in the book.

2.4 Curry-Howard Correspondence

Task

Explain the Curry-Howard Correspondence in your own words. The description
do not have to be long (max half a page), but should explain the key ideas for
someone that is not familiar with the topic.

Chapter 3

Extensions for Creating
Programming Languages

In the rest of the course, you should design your own programming language.
You may extended it in any way you want, but the following tasks state what
the language must at least include, but it can include more.

Note also that you should comment your source code according to common
sound software engineering practice.

3.1 Simple Extensions

Task

You may add any extensions or variants (with different syntax) of the simple
extensions that are described in TAPL Chapter 11. However, you must at least
include the following extensions.

e Let bindings
e Tuples

e General recursion

3.2 Lists, References, and Exceptions

3.2.1 Task

Write down a pedagogical summary that explains the key ideas of the syntax
and semantics for Lists, References, and Exceptions. The summary should be
approximately one page for each of the three language features.

3.2.2 Task

Select and implement at least one of the language features: Lists, References,
or Exceptions.

3.3 User Manual and Examples
Task

For your new language, you should provide a short user manual (a separate
document) that explains the key functionalities of the language. The manual
should include program code examples that demonstrate the different language
features that you have implemented. Please add these examples both in the
manual and in separate files that are directly executable. Do not forget to
describe how the programs should be executed.

Bibliography

[1] Benjamin C. Pierce. Types and Programming Languages. The MIT Press,
2002.

	Introduction
	Submit your solutions
	Resources

	Simply Typed Lambda Calculus and Type Safety
	Typed Arithmetic Expressions
	Simply Typed Lambda Calculus
	Type Safety
	Curry-Howard Correspondence

	Extensions for Creating Programming Languages
	Simple Extensions
	Lists, References, and Exceptions
	Task
	Task

	User Manual and Examples

