KTH ROYAL INSTITUTE
OF TECHNOLOGY

Distributed Hash Tables

. . e Large scale data bases
Distributed Hash Tables o reds of comers
Vladimir Vlassov + High churn rate

— servers will come and go

* Benefits
— fault tolerant
— high performance
— self administrating

1D2201 DISTRIBUTED SYSTEMS / DISTRIBUTED HASH TABLES

A key-value store Unique identifiers

Associative array to store key-value pairs, a data structure known as a We need unique identifiers to identify objects, i.e. to find a
hash table (array of buckets) that maps keys to values. bucket to get/put an object with a given key

_ identifier = f(key, size_of hash_table)
Operations:
put (key, object) — store a given object with a given key

object: = get (key) —read a object given key. How to select identifiers:

e use akey (a name)

Design issues: e a cryptographic hash of the key
+ Identify : how to uniquely identify an object e acryptographic hash of the object
e Store: how to distribute objects among servers
* Route: how to find an object why hash?

1D2201 DISTRIBUTED SYSTEMS / DISTRIBUTED HASH TABLES 1D2201 DISTRIBUTED SYSTEMS / DISTRIBUTED HASH TABLES

Key distribution — direct map Key distribution — hashing keys

Direct map of keys to identifiers (buckets) gives a non-uniform A cryptographic hash function gives a uniform (even) distribution
(uneven) distribution of keys among buckets of the keys among buckets

hash = hashfunc(key)

identifier = hash % table_size

| '\

1D2201 DISTRIBUTED SYSTEMS / DISTRIBUTED HASH TABLES 1D2201 DISTRIBUTED SYSTEMS / DISTRIBUTED HASH TABLES

Add a server Random distribution

at three-o’clock-in-the-morning do: Random distribution of key ranges among servers
—

How to find a server responsible for a given key?

Circular domain Circular domain

blue:45 blue:45
« ID dom_ain: 0,1,2,.., Size_—l * responsibility: from your
» clockwise step along the ring predecessor to your number
i =(+ 1)% size :
esbonsibilitv: from vour * when inserted: take over
ponsSIbiity: you responsibility

predecessor to your number
< when inserted: take over responsibility

red:120

1D2201 DISTRIBUTED SYSTEMS / DISTRIBUTED HASH TABLES 1D2201 DISTRIBUTED SYSTEMS / DISTRIBUTED HASH TABLES

Circular domain Circular domain

blue:45 blue:45
green:290 green:290

e responsibility: from your e responsibility: from your
predecessor to your number predecessor to your number

* when inserted: take over * when inserted: take over
responsibility responsibility

yellow:250 « talk to the node in front of you
red:120 red:120

1D2201 DISTRIBUTED SYSTEMS / DISTRIBUTED HASH TABLES 1D2201 DISTRIBUTED SYSTEMS / DISTRIBUTED HASH TABLES

Double linked circle

€--o.

TTNPI70 <o

s:97

1120

A
1

Stabilization

<€=-=-o

TTT=Np:70

Ask your successor: Who is your predecessor?
Correct a wrong link if any

Stabilization
Ask your successor: Who is your predecessor?
€==n., Correct a wrong link if any
TTTNPI70 < .
- N s: - Who is your predecessor?
e predecessor NN q: - It's p at 70.
e successor \\ Y s: - Why don’t you point to me!
\
* how do we insert a new node \\ Vo si97
« concurrently vy
T
v |V
q:120
IoA
v 1

Stabilization

Ask your successor: Who is your predecessor?
€==u, Correct a wrong link if any
TT=Np70 &
~ ~
~ >
\ S S
\ L T P
\ -~ >
LY \& >
Y\ 7 s:97 p: - Who is your predecessor? 7 5:97
\ " .
' o q: - It'ssat97. ' Il
[p: - Hmmm, that’s a better successor " |
v i w v
q:120
IoA
v 1

p: - Who is your predecessor?

Let's play a game! y ' s: - | don't have one.

p: - Why don’t you point to me!

1D2201 DISTRIBUTED SYSTEMS / DISTRIBUTED HASH TABLES 1D2201 DISTRIBUTED SYSTEMS / DISTRIBUTED HASH TABLES

Stabilization Crashing nodes

Stabilization is run periodically: allow nodes to be inserted ce-3 70 T e monitor neighbors
: == .
concurrently. g=== CmmEmaa.,, » safety pointer
. +1:82
N
Inserted node will take over responsibility for part of a segment. o o
,/ S [4
o 4 5:97
LpTT A
—"‘—‘ ¥ 257 /’,
- -

—==> 1120 oo

m==

1D2201 DISTRIBUTED SYSTEMS / DISTRIBUTED HASH TABLES 1D2201 DISTRIBUTED SYSTEMS / DISTRIBUTED HASH TABLES

Crashing nodes Crashing nodes

S . » monitor neighbors % 70 e * monitor neighbors
<--- L « safety pointer €= S + safety pointer
", N « detect crash s, . * detect crash
N 1 > \ .
. ! s \ » update forward pointer
\\ 1 \\ v
S s5:97 M 597
,—‘—‘—‘—/A I' "‘—‘—‘—’A "
Tees qu120 T s qi120 L
€=== | Sty

1D2201 DISTRIBUTED SYSTEMS / DISTRIBUTED HASH TABLES 1D2201 DISTRIBUTED SYSTEMS / DISTRIBUTED HASH TABLES

Crashing nodes

Crashing nodes
e * monitor neighbors -2 70 * monitor neighbors

Qe Ty Tl - safety pointer e « safety pointer
\ N detect crash \ RN + detect crash
1 \ LY
: \‘ e update forward pointer \ \\ \\ e update forward pointer
\ . \ .
\ 5-37 * update safety pointer \ ‘3_27 « update safety pointer
Vo eeTA (UL . stabilize

=T ’ ’ e ’ ’
=1 L F ’ =7 .7 ’
e-"""" Yoooe-t = et e-"""" T P
> q120 (__,—” ---‘>q2120 <_—""
€--- €---
Russian roulette Replication
Where should we store a replica of our data?
€= * =
—ey PITO -- P70
How many safety pointers do we need? AN i
120 e IJq:120
(-—"”‘ 7 <—H—’"J"

1D2201 DISTRIBUTED SYSTEMS / DISTRIBUTED HASH TABLES

Routing overlay Leaf set

* The problem of finding an object in our distributed table: Assume that each node holds a leaf set of its closest (£l)
+ nodes can join and crash neighbors (a.k.a. a finder table).
* trade-off between routing overhead and update We can jump | nodes in each routing step but we still have
overhead complexity of O(n).

In the worst case we can always forward a request to our Leaf setis updated in O(l).

successor. The leaf set could be as small as only the immediate
neighbors but is often chosen to be a handful.

1D2201 DISTRIBUTED SYSTEMS / DISTRIBUTED HASH TABLES 1D2201 DISTRIBUTED SYSTEMS / DISTRIBUTED HASH TABLES

Improvement Pastry
350 _ _ 10 20 get (222)
W7, -, ~o N A routing table, each row represents one level of routing.
310 ,7 M N4 S
¢ Tl N 5o ¥ -
280 I8 TTTeeN » we’re looking for the e 32rows
. I JPCT : \‘ 0 responsible node of an object 16 entries per row
1 e®® 1 . .
lvi'"'// ' « each router hop brlng_s us « any node found in 32 hops
20 v ! closer to the .respon5|ble .node « maximal number of nodes 1632 or 2128 (more than
W O vl 12 « the leaf set gives us the final enough)
A . .
238 7 \ // 120 destination « search is O(lg(n)) where n is number of nodes
20N), o130 g9
7 145

210 ‘——’

1D2201 DISTRIBUTED SYSTEMS / DISTRIBUTED HASH TABLES 1D2201 DISTRIBUTED SYSTEMS / DISTRIBUTED HASH TABLES

The price of fast routing

Network aware routing

350 10 350 10
337 - T T~ 20 get (222) 3B L, T TSN 20 get (230)
~ ~
” ,/|\\ ~ ¢ Q ~ ,'
310/<f,/' A \ 40 310,74 AN N0
1 2 I 2a
/ o TTsel ;\50“ / : aaen \\50“
1] - ==
280 - 280 P . .
I, 3 vt ' « belazy / | =Tl 4.{ \ « when inserting new node
] Pt e 1 70 . [=T e 1 70 .
267) R 1 detect failed nodes when used 267 | ban” . v + attach to the network-wise closest
- \ e®® g
V&=~ //' o : " 85 e route in alternative direction 250 Ve~ J L . " 85 node
\ 1 . . 4 * 1 . :
Vet V11 ask neighbors of alternative node \ Lot W 112 * adopt the routing entries on the
= > o
238 V€ ol 4120 238N ¢ -e==2/ 130 way down
A ~y 230 ¥, ’
224N s 10 224> s 130
N A S
_ 7 145 -7 145

~
210 S ===

158

Overlay networks

Structured
¢ awell-defined structure
e takes time to add or delete nodes
e takes time to add objects
e easy to find objects

1D2201 DISTRIBUTED SYSTEMS / DISTRIBUTED HASH TABLES 1D2201 DISTRIBUTED SYSTEMS / DISTRIBUTED HASH TABLES

1D2201 DISTRIBUTED SYSTEMS / DISTRIBUTED HASH TABLES

Unstructured
e arandom structure
e easy to add or delete nodes
e easy to add objects
* takes time to find objects

1D2201 DISTRIBUTED SYSTEMS / DISTRIBUTED HASH TABLES

DHT usage

Large scale key-value store.

» fault tolerant system in high churn rate environment
* high availability low maintenance

Riak

The Pirate Bay

* replaces the tracker by a DHT
» clients connects as part in the DHT large scale key-value store

@ .
L]
» DHT keeps track of peers that share .§ rl a k * inspired by Amazon Dynamo
content ¢ « implemented in Erlang

Summary DHT

* why hashing?
 distribute storage in ring
* replication

* routing

1D2201 DISTRIBUTED SYSTEMS / DISTRIBUTED HASH TABLES

