KTH ROYAL INSTITUTE
OF TECHNOLOGY

Time
Viadimir Vlassov and Johan Montelius

Time

Why is time important?

ID2201 DISTRIBUTED SYSTEMS / TIME

The clock is not enough

In an asynchronous system clocks can not be completely trusted.
Nodes will not be completely synchronized.

We still need to:

» talk about before and after
e order events
e agree on order

ID2201 DISTRIBUTED SYSTEMS / TIME 3

Logical time

All events in one process are ordered.

The sending of a message occurs before the receiving of the message.
Events in a distributed system are partially ordered.

The order is called happened before.

Logical time gives us a tool to talk about ordering without having to
synchronize clocks.

ID2201 DISTRIBUTED SYSTEMS / TIME 4

Partial order

PO pl p2 p3

C > > > >
g0 ql g2 -°q3

o—6 O 0 :
r0 1, .

Vv

G S

ID2201 DISTRIBUTED SYSTEMS / TIME

Presenter
Presentation Notes
Sending All events in one process are ordered.
The sending of a message occurs before the receiving of the message.
Events in a distributed system are partially ordered.
The order is called happened before.
Logical time gives us a tool to talk about ordering without having to synchronize clocks.

Lamport clock

One counter per process:
e initially setto O
* each process increment only its own clock
e sent messages are tagged with time stamp
Receiving a message:

« set the clock to the greatest of the internal clock and
the time stamp of the message

ID2201 DISTRIBUTED SYSTEMS / TIME 6

Lamport clock

0 1 2 3
o) A P N
o \w w7 ?
\
\ /;1
\\ 7
0 1 N 2 .73
o—OS) A N
o 7 — o ?
// N
7 \
7, \\
O 1 // N 4
C pa P N
\ A\ 4

If el happened before e2 then the time stamp of el is less than the time stamp of e2.
el happend-before e2 — L(e1) <L(e2)

What do we know if the time stamp of el is less than the time stamp of e2?

ID2201 DISTRIBUTED SYSTEMS / TIME 7

Let’s play a game

DON'T VIOLATE THE "HAPPEND BEFORE" ORDER!

ID2201 DISTRIBUTED SYSTEMS / TIME 8

Can we do better

We should be able to time stamp events so that we can capture
the partial order.
We want to look at two time stamps and say:

If the time stamps are ordered then the events are ordered

T (el)<T (e2) — el happend-before e2

ID2201 DISTRIBUTED SYSTEMS / TIME 9

Vector clock

A vector with one counter per process:
 initially set to <0,....>
» each process increments only its own index
e sent messages are tagged with a vector

Receiving a message:
 merge the internal clock and the time stamp of the message

ID2201 DISTRIBUTED SYSTEMS / TIME

Vector clock

<0,0,0> <1,0,0> <2,0,0> <3,0,1>
O N\ N\ Ja >
O O O
\\\ /1
N /7
\\\ ///
<0,0,0> <0,1,0> <1,2,0>,s <1,3,0>
O N\ 7 N\ >
O T, O
// N
/7 \
/7 \
V4 \
/7 \
<0,0,0> <0,0,1> Y1,3,2>
c S o——
O O

V (el) <V (e2) — el happend-before e2
How do we define < over vector clocks?

ID2201 DISTRIBUTED SYSTEMS / TIME

Pros and cons

The partial order is complete; we can look at the time stamp and
determine if two events are ordered.

The vectors will take up a some space and could become a problem.

What should we do if more processes come and leave, there is no
easy mechanism to add new clocks to the system.

Vector clocks could be over-kill.

ID2201 DISTRIBUTED SYSTEMS / TIME

Summary

If we can not trust real clocks to be synchronized we have to
use something else.
Logical time captures what we need:

« Lamport clock: sound

* Vector clock: complete

Implementation issues:
« do we have to time stamp everything
 how do we handle new processes

ID2201 DISTRIBUTED SYSTEMS / TIME

	Time
	Time
	The clock is not enough
	Logical time
	Partial order
	Lamport clock
	Lamport clock
	Let’s play a game
	Can we do better
	Vector clock
	Vector clock
	Pros and cons
	Summary

