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Time 
Why is time important? 
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The clock is not enough 
In an asynchronous system clocks can not be completely trusted. 

Nodes will not be completely synchronized. 

We still need to: 
• talk about before and after 
• order events 
• agree on order 
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Logical time 
All events in one process are ordered. 

The sending of a message occurs before the receiving of the message. 

Events in a distributed system are partially ordered. 

The order is called happened before. 

Logical time gives us a tool to talk about ordering without having to 
synchronize clocks. 

ID2201 DISTRIBUTED SYSTEMS / TIME 4  



Partial order 
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Presenter
Presentation Notes
Sending All events in one process are ordered.
The sending of a message occurs before the receiving of the message.
Events in a distributed system are partially ordered.
The order is called happened before.
Logical time gives us a tool to talk about ordering without having to synchronize clocks.



Lamport clock 
One counter per process: 

• initially set to 0 
• each process increment only its own clock 
• sent messages are tagged with time stamp 

Receiving a message: 
• set the clock to the greatest of the internal clock and 

the time stamp of the message 
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Lamport clock 
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If e1 happened before e2 then the time stamp of e1 is less than the time stamp of e2. 
e1  happend-before e2  → L(e1) < L(e2) 

What do we know if the time stamp of e1 is less than the time stamp of e2? 
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Let’s play a game 
 
 
DON’T VIOLATE THE “HAPPEND BEFORE” ORDER! 
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Can we do better 
We should be able to time stamp events so that we can capture 
the partial order. 

We want to look at two time stamps and say: 

if the time stamps are ordered then the events are ordered 

T (e1) < T (e2) → e1  happend-before e2 
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Vector clock 
A vector with one counter per process: 

• initially set to <0,....> 
• each process increments only its own index 
• sent messages are tagged with a vector 

 
 
Receiving a message: 

• merge the internal clock and the time stamp of the message 
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Vector clock 

V (e1) < V (e2) → e1 happend-before e2 
How do we define < over vector clocks? 
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Pros and cons 
The partial order is complete; we can look at the time stamp and 
determine if two events are ordered. 

The vectors will take up a some space and could become a  problem. 

What should we do if more processes come and leave, there is no 
easy mechanism to add new clocks to the system. 

Vector clocks could be over-kill. 
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Summary 
If we can not trust real clocks to be synchronized we have to 
use something else. 

Logical time captures what we need: 
• Lamport clock: sound 
• Vector clock: complete 

Implementation issues: 
• do we have to time stamp everything 
• how do we handle new processes 
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