
KTH ROYAL INSTITUTE
OF TECHNOLOGY

Time
Vladimir Vlassov and Johan Montelius

Time
Why is time important?

ID2201 DISTRIBUTED SYSTEMS / TIME 2

The clock is not enough
In an asynchronous system clocks can not be completely trusted.

Nodes will not be completely synchronized.

We still need to:
• talk about before and after
• order events
• agree on order

ID2201 DISTRIBUTED SYSTEMS / TIME 3

Logical time
All events in one process are ordered.

The sending of a message occurs before the receiving of the message.

Events in a distributed system are partially ordered.

The order is called happened before.

Logical time gives us a tool to talk about ordering without having to
synchronize clocks.

ID2201 DISTRIBUTED SYSTEMS / TIME 4

Partial order

ID2201 DISTRIBUTED SYSTEMS / TIME

p0

r0

q0 q1

p1

r1

q2

p2

q3

r2

p3

5

Presenter
Presentation Notes
Sending All events in one process are ordered.
The sending of a message occurs before the receiving of the message.
Events in a distributed system are partially ordered.
The order is called happened before.
Logical time gives us a tool to talk about ordering without having to synchronize clocks.

Lamport clock
One counter per process:

• initially set to 0
• each process increment only its own clock
• sent messages are tagged with time stamp

Receiving a message:
• set the clock to the greatest of the internal clock and

the time stamp of the message

ID2201 DISTRIBUTED SYSTEMS / TIME 6

Lamport clock

ID2201 DISTRIBUTED SYSTEMS / TIME

0

0 1

0 1

1

2

2

3

3

4

If e1 happened before e2 then the time stamp of e1 is less than the time stamp of e2.
e1 happend-before e2 → L(e1) < L(e2)

What do we know if the time stamp of e1 is less than the time stamp of e2?

7

Let’s play a game

DON’T VIOLATE THE “HAPPEND BEFORE” ORDER!

8 ID2201 DISTRIBUTED SYSTEMS / TIME

Can we do better
We should be able to time stamp events so that we can capture
the partial order.

We want to look at two time stamps and say:

if the time stamps are ordered then the events are ordered

T (e1) < T (e2) → e1 happend-before e2

9 ID2201 DISTRIBUTED SYSTEMS / TIME

Vector clock
A vector with one counter per process:

• initially set to <0,....>
• each process increments only its own index
• sent messages are tagged with a vector

Receiving a message:

• merge the internal clock and the time stamp of the message

ID2201 DISTRIBUTED SYSTEMS / TIME 10

Vector clock

V (e1) < V (e2) → e1 happend-before e2
How do we define < over vector clocks?

11 ID2201 DISTRIBUTED SYSTEMS / TIME

<0,1,0>

<0,0,0>

<0,0,0>

<1,0,0> <2,0,0> <3,0,1>

<1,2,0> <1,3,0>

<0,0,1> <0,0,0> <1,3,2>

Pros and cons
The partial order is complete; we can look at the time stamp and
determine if two events are ordered.

The vectors will take up a some space and could become a problem.

What should we do if more processes come and leave, there is no
easy mechanism to add new clocks to the system.

Vector clocks could be over-kill.

12 ID2201 DISTRIBUTED SYSTEMS / TIME

Summary
If we can not trust real clocks to be synchronized we have to
use something else.

Logical time captures what we need:
• Lamport clock: sound
• Vector clock: complete

Implementation issues:
• do we have to time stamp everything
• how do we handle new processes

ID2201 DISTRIBUTED SYSTEMS / TIME 13

	Time
	Time
	The clock is not enough
	Logical time
	Partial order
	Lamport clock
	Lamport clock
	Let’s play a game
	Can we do better
	Vector clock
	Vector clock
	Pros and cons
	Summary

