

KTH ROYAL INSTITUTE OF TECHNOLOGY

Requirements

- Performance
- Scalability
- Reliability
- Security
- Mobility
- Quality of Service
- Multicasting

ID2201 DISTRIBUTED SYSTEMS / NETWORKS AND INTERPROCESS COMMUNICATION

2

Types of networks

Communication

- WAN Wide Area Networks
- MAN Metropolitan Area Networks

Networks and Interprocess

Vladimir Vlassov and Johan Montelius

- LAN Local Area Networks
- PAN Personal Area Networks

Latency

Transfer rate:

What is the rate at which we can send data?

Performance

- Latency how long time does it take to send an empty message?
- Transfer rate what is the rate at which we can send data?

Latency

Why does it take time to send a message?

- distance speed of signal (light)
- access granting of resource
- routing processing in nodes

-	
	ID2201 DISTRIBUTED SYSTEMS / NETWORKS AND INTERPROCESS COMMUNICATION

ID2201 DISTRIBUTED SYSTEMS / NETWORKS AND INTERPROCESS COMMUNICATION

fast as ..

What is the speed of light? 300 000 km/s ... or 300 km/ms

Distance in ms: Stockholm - Hamburg approx. 800 km or 3 ms Stockholm - NYC approx. 6.600 km or 23 ms Stockholm - Melbourne approx. 15.600 km or 52 ms

Routers. switches and fiber optics adds to this so Melbourne is approx. 300 ms away.

ping

			ping www.aflcom mmunityclub.com): 56 data bytes	
64	bytes	from	202.74.66.109:	icmp_seq=0 th	tl=43	time=371.140 ms	
Rec	uest t	timeo	ut for icmp_seq	1			
64	bytes	from	202.74.66.109:	icmp_seq=2 th	tl=43	time=406.258 ms	
64	bytes	from	202.74.66.109:	icmp_seq=3 th	tl=43	time=626.502 ms	
64	bytes	from	202.74.66.109:	icmp_seq=4 th	tl=43	time=543.209 ms	
64	bytes	from	202.74.66.109:	icmp_seq=5 th	tl=43	time=461.641 ms	
64	bytes	from	202.74.66.109:	icmp_seq=6 th	tl=43	time=382.349 ms	
64	bytes	from	202.74.66.109:	icmp_seq=7 th	tl=43	time=611.176 ms	
64	bytes	from	202.74.66.109:	icmp_seq=8 t	tl=43	time=367.338 ms	
64	bytes	from	202.74.66.109:	icmp_seq=9 th	tl=43	time=367.141 ms	
64	bytes	from	202.74.66.109:	icmp_seq=10 t	ttl=43	time=683.341 ms	
64	bytes	from	202.74.66.109:	icmp_seq=11 t	ttl=43	time=605.175 ms	
64	bytes	from	202.74.66.109:	icmp_seq=12 1	ttl=43	time=520.319 ms	
^C							
	- www	aflcon	nmunityclub.com	au ping stat:	istics		
13	packet	ts tra	ansmitted, 12 p	ackets receive	ed. 7.	7% packet loss	

Using ICMP packages might give a better value, UDP might be slower.

Latency in different networks

- LAN/WLAN local area networks (Ethernet/WiFi) 1 10 ms
- WAN wide area networks (IP routed)
 20 400 ms
- Mobile networks
 40 800 ms
- Satellite (geo-stationary) > 250 ms

Message size

How does latency vary with the size of the messages?

ID2201 DISTRIBUTED SYSTEMS / NETWORKS AND INTERPROCESS COM	
ID2201 DISTRIBUTED STSTEWS/ NETWORKS AND INTERFROCESS CON	INUNICATION

ID2201 DISTRIBUTED SYSTEMS / NETWORKS AND INTERPROCESS COMMUNICATION

10

12

Transfer rate

The rate at which we can send data (does not mean that it has arrived).

What is the transfer rate of:

ADSL	1 - 20 Mb/s
Ethernet	100 Mb/s - 1 Gb/s
802.11	11 Mb/s, 54 Mb/s, 72 Mb/s
3G/4G	1 Mb/s, 2 Mb/s, 100 Mb/s

(KTH)

Overhead

medium access: 802.11 – RTS/CTS error handling: detection, forward error correction, ARQ header: MAC header, IP header, TCP ... flow control: TCP window

Is this shared with others?

1

What's in it for me?

The application layer transfer rate is much lower than the physical layer bit rate.

ID2201 DISTRIBUTED SYSTEMS / NETWORKS AND INTERPROCESS COMMUNICATION

How does the application layer latency differ from the network layer latency?

Latency and transfer rate

Stockholm to Gothenburg - 400 km, best possible data communication layer?

10 Gbit/s

100 m^3 or five million BlueRay 50Gbyte disks, delivered in 6 h, two trucks every day

ID2201 DISTRIBUTED SYSTEMS / NETWORKS AND INTERPROCESS COMMUNICATION

(KTH)

Communication layers

Application	the end product
Presentation	encoding of information, serialization, marshaling
Session	security, authentication, initialization
Transport	messages, streams, reliability, flow control
Network	addressing of nodes in a network, routing, switching
Data link	point to point deliver of frames, medium access, link control
Physical layer	bits to analog signals, electrical, optical, radio

(KTH)

Internet stack

HTTP, FTP, SMTP TCP, UDP, SCTP, ICMP IP, ARP Ethernet, WiFi, ..

15

13

What if

What would the world look like ...

.. if we only had Ethernet?

Routing

Two approaches:

- Distance vector: send routing table to neighbors, RIP, BGP
- Link state: tell everyone about your direct links, OSPF

Pros and cons?

ID2201 DISTRIBUTED SYSTEMS / NETWORKS AND INTERPROCESS COMMUNICATION	17	ID2201 DISTRIBUTED SYSTEMS / NETWORKS AND INTERPROCESS COMMUNICATION	18
--	----	--	----

IP addresses

What is the structure of an IP address?

How would you allocate IP addresses to make routing easier?

What is actually happening?

UDP and TCP

One word that that describes the difference between UDP and TCP.

UDP and TCP

Introduces two communication abstractions:

- UDP: datagram
- TCP: stream
- Gives us port numbers to address processes on a node.
- About hundred other protocols defined using IP. (ICMP, IGMP, RSVP, SCTP...)
- More protocols defined on top of UDP and TCP.

UDP

- A datagram abstraction, independent messages, limited in size.
- Low cost, no set up or tear down phase.
- No acknowledgment.

21

ТСР

- A duplex stream abstraction.
- · Reliability, lost or erroneous packets are retransmitted.
- Flow control, to prevent the sender from flooding the receiver.
- Congestion friendly, slows down if a router is choked.

UDP and TCP

- UDP: small size messages, build your own streams
- TCP: large size messages, flow control of a stream of messages

Can you trust TCP delivery?

Sockets

Socket is the programmer's abstraction of the network layer

- an end point a virtual network connection;

- identified by an IP address & port number, and a transport protocol (TCP, UDP, ...)

- Datagram sockets for messages (UDP)
- Stream sockets for duplex byte streams (TCP)

(KTH)

Stream Socket

A TCP socket for stream-based communication

- Server
 - Creates a listen socket bound to a port (could be in several steps: create, bind, listen)
 - Accepts incoming connection request and creates a communication socket used for reading/writing a byte stream.
- Client
 - Creates a communication socket and connects it to a server identified by an IP address and a port.
 - Reads/writes from socket.

ID2201 DISTRIBUTED SYSTEMS / NETWORKS AND INTERPROCESS COMMUNICATION

ID2201 DISTRIBUTED SYSTEMS / NETWORKS AND INTERPROCESS COMMUNICATION

A Server in Erlang

A Server in Erlang

request(Client) ->

case gen_tcp:recv(Client, 0) of
 {ok, Request} ->
 Response = reply(Request),
 gen_tcp:send(Client, Response);
 {error, Error} ->
 error
 end,
gen_tcp:close(Client).

reply(Request) ->

generate and return a byte sequence

ID2201 DISTRIBUTED SYSTEMS / NETWORKS AND INTERPROCESS COMMUNICATION

27

25

28

Datagram socket

- Server
 - Create a message socket and bind it to a port.
 - Receive an incoming message (message contains a source IP address and port number).
- Client
 - Create a message socket bound to a source port.
 - Create a message and give it a destination address and port number.
 - Send the message.

ID2201 DISTRIBUTED SYSTEMS / NETWORKS AND INTERPROCESS COMMUNICATION

(KTH)

Marshaling of data

How do we transform internal data structure into sequencing of bytes?

- Language dependent: Java serialization, Erlang external term format
- Independent: XML, Google Protocol Buffer, ASN.1
 - message format defined by specification: XML Schema, .proto, ...
 - specification is used by a compiler to generate encoder and decoder

ID2201 DISTRIBUTED SYSTEMS / NETWORKS AND INTERPROCESS COMMUNICATION

Example

ANS.1 specification

FooProtocol DEFINITIONS ::= BEGIN
FooQuestion ::= SEQUENCE {
 trackingNumber INTEGER,
 question IA5String}
FooAnswer ::= SEQUENCE {
 questionNumber INTEGER,
 answer BOOLEAN}
END

c uata	sciuciules
struct	<pre>foo_question {</pre>
	<pre>int tracking_number;</pre>
	char question[128];

}

C data stausturas

foo = {5, "Anybody there?"};

Summary

The application layer should in a perfect world be independent of underlying layers.

The world is not perfect.

Understanding underlying network characteristics is essential when developing distributed applications.

31

29