SF2795 Fourier Analysis

Homework Assignment for Lecture 16

1. Check that for any function f on G, the determinant of the $\# G \times \# G$ matrix $\left[f\left(x_{1} g_{2}^{-1}\right)\right]$ can be expressed as

$$
\operatorname{det}\left[f\left(g_{i} g_{j}^{-1}\right)\right]=\prod_{\phi \in \hat{G}} \# G \hat{f}(\phi)
$$

and us this to prove a primitive variant of Exercise 4.2.4
2. Check the following variant of the Poisson summation formula:

$$
\sum_{G / H}\left|\sum f(g h)\right|^{2}=\# G \# H \sum_{\phi \in(G / H)^{\wedge}}|\hat{f}(\phi)|^{2}
$$

Hint: apply the Plancherel identity to $f^{0}(g)=\sum_{h \in H} f(g h)$.
3. The group $G=\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}$ (n-fold and with addition) is placed in 1:1 correspondence with the set $Q=0,1, \ldots, 2^{n}-1$ by mapping

$$
g=\left(k_{0}, \ldots, k_{n-1}\right) \rightarrow \sum_{j=0}^{n-1} k_{j} 2^{j}
$$

in which $k_{j}=0$ or 1 for $0 \leq j<n$. This permits you to think of Q as a group isomorphic to G. Prove that $j: G \rightarrow Q$ is an isomorphism iff

$$
j(g)=\sum_{i=0}^{n-1}\left[1-e_{i}(g)\right] 2^{i-1}
$$

in which $e_{i}: 0 \leq i<n$ is a basis of the dual group \hat{G}, that is to say, every character e can be expressed in precisely on way as a product $e=e_{0}^{k_{0}} \cdots e_{n-1}^{k_{n-1}}$ with $0 \leq k_{i}<2$.
(For the interested student we refer to exercise 6 for an interesting continuation)

