
Homework IV, Foundations of Cryptography 2016
Before you start:

1. The deadlines in this course are strict. This homework set is due as specified at
https://www.kth.se/social/course/DD2448/subgroup/vt-2016-krypto16/page/deadlines-16.

2. Read the detailed homework rules at
https://www.kth.se/social/files/5686fcd8f276542387729c18/solution_rules.pdf.

3. Read about I and T-points, and how these translate into grades, in the course descrip-
tion at
https://www.kth.se/social/files/5692df7bf2765405aca1825f/course_description.pdf.

4. You may only submit solutions for a nominal value of 25 points in total (summing I
and T points). The total number of points below may be larger and this should be
interpreted as giving you a way to choose problems you like.

The problems are given in no particular order. If something seems wrong, then visit
https://www.kth.se/social/course/DD2448/subgroup/vt-2016-krypto16/page/handouts-10 to
see if any errata was posted. If this does not help, then email dog@kth.se. Don’t forget to
prefix your email subject with Krypto16.

We may publish hints on the homepage as well if a problem appears to be harder than
expected.

1 Read about the Dual Elliptic Curve Deterministic Random Bit Generator proposed by NIST in
the original document http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.
pdf. Read other sources you find online as well.

1a (1T) Briefly summarize the controversy regarding this PRG.

1b (1T) Why do you think it was obvious to most researchers that something was not right
with this construction even before the backdoor was made public?

1c (2T) More generally it is worthwhile to consider how a good elliptic curve is chosen. What
is the purpose of the million dollar curve and what is special about how it is generated?

2 You are given a non-singular elliptic curve over a prime order field Zq on Weierstrass normal
form, i.e., E : y2 = f(x), where f(x) = x3 + ax+ b.

2a (2T) Construct an efficiently computable invertible injection {0, 1}k → E, i.e., describe:
(1) an algorithm Encode that takes a bitstring as input and outputs an element in the
curve, and (2) an algorithm Decode that takes a group element and outputs a bitstring.

Page 1 (of 2)

Foundations of cryptography • Spring 2016
Douglas Wikström

https://www.kth.se/social/course/DD2448/subgroup/vt-2016-krypto16/page/deadlines-16
https://www.kth.se/social/files/5686fcd8f276542387729c18/solution_rules.pdf
https://www.kth.se/social/files/5692df7bf2765405aca1825f/course_description.pdf
https://www.kth.se/social/course/DD2448/subgroup/vt-2016-krypto16/page/handouts-10
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf


2b (2T) Prove that your construction satisfies Decode(Encode(m)) = m for all m ∈ {0, 1}k
and explain how big you can make k relative to q.

2c (1T) It turns out that you may need to allow your encoding algorithm to be probabilistic,
so it suffices to prove (under reasonable assumptions) that the expected running time (over
the randomness of your algorithms) for any fixed input is bounded by a polynomial in log q.
What is the polynomial?

3 (4T) You are given a pseudo-random function Fn = {fn,γ}γ∈Γn , where n ∈ N is the security
parameter and Γn is a set of possible keys for the security parameter n. Suppose that fn,γ :
{0, 1}n → {0, 1}logn for every γ ∈ Γn. Can you construct a pseudorandom function F ′n =
{f ′n,γ}γ∈Γ′

n
such that f ′n,γ : {0, 1}n → {0, 1}n? Prove that it works in that case, or explain

informally why you think it is not possible if you think it is not possible.

4 (2T) Consider SHA-256 as a random oracle. What would you do if you needed a function in
practice that you could consider to be (almost) a random oracle {0, 1}∗ → {0, 1}3000? What is
the collision resistance of your function?

5

5a (1T) Investigate how randomness for cryptographic use is generated for software written
in JavaScript in at least two open source browsers, and: (1) include a link to the code
that does this, (2) explain briefly the cryptographic construction, and (3) write a minimal
example of how to use it. (It does not have to be executable code, a snippet suffices.)

5b (1T) Investigate how randomness for cryptographic use is generated for software written
in OracleJDK, and: (1) include a link to the code that does this, (2) explain briefly the
cryptographic construction, and (3) write a minimal example of how to use it. (It does not
have to be executable code, a snippet suffices.)

Rigorous proofs

The following was covered in class so your task is to give rigorous proofs, i.e., the expectation of
the quality of your solution is higher than for other solutions.

6 (4T) You are given a pseudo-random generator such that PRG : {0, 1}n → {0, 1}n+1 for every
security parameter n ∈ N. Construct a pseudo-random function PRG′ such that PRG′ : {0, 1}n →
{0, 1}2n for every n ∈ N, and prove that it is a pseudo-random generator.

7 (4T) You are given a pseudo-random generator such that PRG : {0, 1}n → {0, 1}2n for every
security parameter n ∈ N. Construct a pseudo-random function Fn = {fn,γ}γ∈Γn such that
fn,γ : {0, 1}logn → {0, 1}n, where n ∈ N is the security parameter and Γn is a set of possible keys
for the security parameter n, and prove that it is a pseudo-random function.

Page 2 (of 2)

Foundations of cryptography • Spring 2016
Douglas Wikström


