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Eigenvalue Perturbation Results, Motivation

We know from a previous lecture that ρ(A) ≤ |||A||| for any
matrix norm. That is, we know that all eigenvalues are in a
circular disk with radius upper bounded by any matrix norm.
More precise results?

What can be said about the eigenvalues and eigenvectors of
A + �B when � is small?

2 / 29

Geršgorin circles

Geršgorin’s Thm: Let A = D +B , where D = diag(d1, . . . , dn),
and B = [bij ] ∈ Mn has zeros on the diagonal. Define

r �i (B) =
n�

j=1
j �=i

|bij |

Ci (D,B) = {z ∈ C : |z − di | ≤ r �i (B)}
Then, all eigenvalues of A are located in

λk(A) ∈ G (A) =
n�

i=1

Ci (D,B) ∀k

The Ci (D,B) are called Geršgorin circles.
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Geršgorin circles, cont.

If G (A) contains a region of k circles that are disjoint from the
rest, then there are k eigenvalues in that region.
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Geršgorin, Improvements

Since AT has the same eigenvalues as A, we can do the same
but summing over columns instead of rows. We conclude that

λi (A) ∈ G (A) ∩ G (AT ) ∀i

Since S−1AS has the same eigenvalues as A, the above can be
“improved” by

λi (A) ∈ G (S−1AS) ∩ G
�
(S−1AS)T

�
∀i

for any choice of S . For it to be useful, S should be “simple”,
e.g., diagonal (see e.g. Corollaries 6.1.6 and 6.1.8).
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Invertibility and stability

If A ∈ Mn is strictly diagonally dominant such that

|aii | >
n�

j=1
j �=i

|aij | ∀i

then
1. A is invertible.
2. If all main diagonal elements are real and positive then all

eigenvalues are in the right half plane.
3. If A is Hermitian with all diagonal elements positive, then

all eigenvalues are real and positive.

6 / 29

Reducible matrices

A matrix A ∈ Mn is called reducible if
� n = 1 and A = 0 or
� n ≥ 2 and there is a permutation matrix P ∈ Mn such

that

PTAP =

�
B C
0 D

�
} r
} n − r

����
r

����
n−r

for some integer 1 ≤ r ≤ n − 1.
A matrix A ∈ Mn that is not reducible is called irreducible.
A matrix is irreducible iff it describes a strongly connected
directed graph, “A has the SC property”.
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Irreducibly diagonally dominant

If A ∈ Mn is called irreducibly diagonally dominant if
i) A is irreducible (= A has the SC property).
ii) A is diagonally dominant,

|aii | ≥
n�

j=1
j �=i

|aij | ∀i

iii) For at least one row, i ,

|aii | >
n�

j=1
j �=i

|aij |
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Invertibility and stability, stronger result

If A ∈ Mn is irreducibly diagonally dominant, then
1. A is invertible.
2. If all main diagonal elements are real and positive then all

eigenvalues are in the right half plane.
3. If A is Hermitian with all diagonal elements positive, then

all eigenvalues are real and positive.
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Perturbation theorems

Thm: Let A,E ∈ Mn and let A be diagonalizable,
A = SΛS−1. Further, let λ̂ be an eigenvalue of A + E .
Then there is some eigenvalue λi of A such that

|λ̂− λi | ≤ |||S ||| |||S−1||| |||E ||| = κ(S)|||E |||
for some particular matrix norms (e.g.,
||| · |||1, ||| · |||2, ||| · |||∞).

Cor: If A is a normal matrix, S is unitary
=⇒ |||S |||2 = |||S−1|||2 = 1. This gives

|λ̂− λi | ≤ |||E |||2
indicating that normal matrices are perfectly conditioned
for eigenvalue computations.
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Perturbation cont’d

If both A and E are Hermitian, we can use Weyl’s theorem
(here we assume the eigenvalues are indexed in non-decreasing
order):

λ1(E ) ≤ λk(A + E )− λk(A) ≤ λn(E ) ∀k

We also have for this case
�

n�

k=1

|λk(A + E )− λk(A)|2
�1/2

≤ ||E ||2

where || · ||2 is the Frobenius norm.
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Perturbation of a simple eigenvalue

Let λ be a simple eigenvalue of A ∈ Mn and let y and x be
the corresponding left and right eigenvectors. Then y ∗x �= 0.

Thm: Let A(t) ∈ Mn be differentiable at t = 0 and assume λ
is a simple eigenvalue of A(0) with left and right
eigenvectors y and x . If λ(t) is an eigenvalue of A(t) for
small t such that λ(0) = λ then

λ�(0) =
y∗A�(0)x

y∗x

Example: A(t) = A + tE gives λ�(0) = y∗Ex
y∗x .
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Perturbation of eigenvalues cont’d

Errors in eigenvalues may also be related to the residual
r = Ax̂ − λ̂x̂ . Assume for example that A is diagonalizable
A = SΛS−1 and let x̂ and λ̂ be a given complex vector and
scalar, respectively. Then there is some eigenvalue of A such
that

|λ̂− λi | ≤ κ(S)
||r ||
||x̂ ||

(for details and conditions see book).
We conclude that a small residual implies a good
approximation of the eigenvalue.
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Perturbation of eigenvectors with simple eigenva-
lues

Thm: Let A(t) ∈ Mn be differentiable at t = 0 and assume
λ0 is a simple eigenvalue of A(0) with left and right
eigenvectors y0 and x0. If λ(t) is an eigenvalue of A(t), it
has a right eigenvector x(t) for small t normalized such that

x∗
0 x(t) = 1, with derivative

x �(0) = (λ0I − A(0))†
�

I − x0y∗
0

y∗
0 x0

�
A�(0)x0

B† denotes the Moore-Penrose pseudo inverse of a
matrix B .

See, e.g., J. R. Magnus and H. Neudecker. Matrix Differential
Calculus with Applications in Statistics and Econometrics.
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Perturbation of eigenvectors with simple eigenva-
lues: The real symmetric case
Assume that A ∈ Mn(R) is real symmetric matrix with
normalized eigenvectors xi and eigenvalues λi . Further assume
that λ1 is a simple distinct eigenvalue. Let Â = A + �B where
� is a small scalar, B is real symmetric and let x̂1 be an
eigenvector of Â that approaches x1 as � → 0. Then a first
order approximation (in �) is

x̂1 − x1 = �
n�

k=2

xT
k Bx1

λ1 − λk
xk

Warning: Non-unique derivative in the complex valued
case!

Warning, Warning Warning: No extension to multiple
eigenvalues!
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Chapter 8: Element-wise nonnegative matrices

Def: A matrix A = [aij ] ∈ Mn,r is nonnegative if aij ≥ 0 for all
i , j , and we write this as A ≥ 0. (Note that this should not
be confused with the matrix being nonnegative definite!)
If aij > 0 for all i , j , we say that A is positive and write this
as A > 0. (We write A > B to mean A − B > 0 etc.)

We also define |A| = [ |aij | ].
Typical applications where nonnegative or positive matrices
occur are problems in which we have matrices where the
elements correspond to

� probabilities (e.g., Markov chains)
� power levels or power gain factors (e.g., in power control

for wireless systems).
� Non-negative weights/costs in graphs.
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Nonnegative matrices: Some properties

Let A,B ∈ Mn and x ∈ Cn. Then
� |Ax | ≤ |A||x |
� |AB| ≤ |A||B |
� If A ≥ 0, then Am ≥ 0; if A > 0, then Am > 0.
� If A ≥ 0, x > 0, and Ax = 0 then A = 0.
� If |A| ≤ |B |, then �A� ≤ �B�, for any absolute norm �·�;

that is, a norm for which �A� = � |A| �.
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Nonnegative matrices: Spectral radius

Lemma: If A ∈ Mn, A ≥ 0, and if the row sums of A are
constant, then ρ(A) = |||A|||∞. If the column sums are
constant, then ρ(A) = |||A|||1.

The following theorem can be used to give upper and lower
bounds on the spectral radius of arbitrary matrices.

Thm: Let A,B ∈ Mn. If |A| ≤ B, then ρ(A) ≤ ρ(|A|) ≤ ρ(B).
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Nonnegative matrices: Spectral radius

Thm: Let A ∈ Mn and A ≥ 0. Then

min
i

n�

j=1

aij ≤ ρ(A) ≤ max
i

n�

j=1

aij

min
j

n�

i=1

aij ≤ ρ(A) ≤ max
j

n�

i=1

aij

Thm: Let A ∈ Mn and A ≥ 0. If Ax = λx and x > 0, then
λ = ρ(A).
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Positive matrices

For positive matrices we can say a little more.

Perron’s theorem: If A ∈ Mn and A > 0, then
1. ρ(A) > 0
2. ρ(A) is an eigenvalue of A
3. There is an x ∈ Rn with x > 0 such that Ax = ρ(A)x
4. ρ(A) is an algebraically (and geometrically) simple

eigenvalue of A
5. |λ| < ρ(A) for every eigenvalue λ �= ρ(A) of A
6. [A/ρ(A)]m → L as m → ∞, where L = xyT , Ax = ρ(A)x ,

yTA = ρ(A)yT , x > 0, y > 0, and xT y = 1.
ρ(A) is sometimes called a Perron root and the vector x = [xi ]
a Perron vector if it is scaled such that

�n
i=1 xi = 1.
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Nonnegative matrices

Generalization of Perron’s theorem to general non-negative
matrices?
Thm: If A ∈ Mn and A ≥ 0, then

1. ρ(A) is an eigenvalue of A
2. There is a non-zero x ∈ Rn with x ≥ 0 such that

Ax = ρ(A)x
For stronger results, we need a stronger assumption on A.
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Irreducible matrices

Reminder: A matrix A ∈ Mn, n ≥ 2 is called reducible if there
is a permutation matrix P ∈ Mn such that

PTAP =

�
B C
0 D

�
} r
} n − r

����
r

����
n−r

for some integer 1 ≤ r ≤ n − 1.
A matrix A ∈ Mn that is not reducible is called irreducible.
Thm: A matrix A ∈ Mn with A ≥ 0 is irreducible iff

(I + A)n−1 > 0
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Irreducible matrices

Frobenius’ theorem: If A ∈ Mn, A ≥ 0 is irreducible, then
1. ρ(A) > 0
2. ρ(A) is an eigenvalue of A
3. There is an x ∈ Rn with x > 0 such that Ax = ρ(A)x
4. ρ(A) is an algebraically (and geometrically) simple

eigenvalue of A
5. If there are exactly k eigenvalues with |λp| = ρ(A),

p = 1, . . . , k , then
� λp = ρ(A)e i2πp/k , p = 0, 1, . . . , k − 1 (suitably ordered)
� If λ is any eigenvalue of A, then λe i2πp/k is also an

eigenvalue of A for all p = 0, 1, . . . , k − 1
� diag[Am] ≡ 0 for all m that are not multiples of k (e.g.

m = 1).
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Primitive matrices

A matrix A ∈ Mn, A ≥ 0 is called primitive if
� A is irreducible
� ρ(A) is the only eigenvalue with |λp| = ρ(A).

Thm: If A ∈ Mn, A ≥ 0 is primitive, then

lim
m→∞

[A/ρ(A)]m = L

where L = xyT , Ax = ρ(A)x , yTA = ρ(A)yT , x > 0,
y > 0, and xT y = 1.

Thm: If A ∈ Mn, A ≥ 0, then it is primitive iff Am > 0 for
some m ≥ 1.
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Stochastic matrices

A nonnegative matrix with all its row sums equal to 1 is called
a (row) stochastic matrix.

A column stochastic matrix is the transpose of a row
stochastic matrix.

If a matrix is both row and column stochastic it is called
doubly stochastic.
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Stochastic matrices cont’d

The set of stochastic matrices in Mn is a compact convex set.
Let 1 = [1, 1, . . . , 1]T . A matrix is stochastic if and only if
A1 = 1 =⇒ 1 is an eigenvector with eigenvalue +1 of all
stochastic matrices.
An example of a doubly stochastic matrix is A = [|uij |2] where
U = [uij ] is a unitary matrix. Also, notice that all permutation
matrices are doubly stochastic.

Thm: A matrix is doubly stochastic if and only if it can be
written as a convex combination of a finite number of
permutation matrices.

Corr: The maximum of a convex function on the set of doubly
stochastic matrices is attained at a permutation matrix!
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Example, Markov processes

Consider a discrete stochastic process that at each time
instant is in one of the states S1, . . . , Sn. Let pij be the
probability to change from state Si to state Sj . Note that the
transition matrix P = [pij ], is a stochastic matrix.
Let µi (t) denote the probability of being in state Si at time t
and µ(t) = [µ1(t), . . . , µn(t)], then µ(t + 1) = µ(t)P .

If P is primitive (other terms are used in the statistics
literature), then µ(t) → µ∞ as t → ∞ where µ∞ = µ∞P , no
matter what µ(0) is. µ∞ is called the stationary distribution.

Nice overview article: S. U. Pillai, T. Suel, S. Cha, The Perron
Frobenius Theorem: Some of its applications,
IEEE Signal Processing Magazine, Mar. 2005.
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Further results

Other books contain more results.
In “Matrix Theory”, vol. II by Gantmacher, for example, you
can find results such as:

Thm: If A ∈ Mn, A ≥ 0 is irreducible, then

(αI − A)−1 > 0

for all α > ρ(A).

(Useful, for example, in connection with power control of
wireless systems).
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