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Gersgorin circles

Gersgorin's Thm: Let A= D + B, where D = diag(dy, ...
and B = [bjj] € M, has zeros on the diagonal. Define

r(B) = byl
j=1
J#i
G(D,B)={zeC:|z—di| <rl(B)}

Then, all eigenvalues of A are located in
M(A) € G(A) =] G(D,B)  Vk
i=1

The Ci(D, B) are called Gersgorin circles.
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Eigenvalue Perturbation Results, Motivation

We know from a previous lecture that p(A) < |||A[|| for any
matrix norm. That is, we know that all eigenvalues are in a
circular disk with radius upper bounded by any matrix norm.
More precise results?

What can be said about the eigenvalues and eigenvectors of
A+ €B when ¢ is small?
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Gersgorin circles, cont.

If G(A) contains a region of k circles that are disjoint from the
rest, then there are k eigenvalues in that region.
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Gersgorin, Improvements

Invertibility and stability

Since AT has the same eigenvalues as A, we can do the same If A€ M, is strictly diagonally dominant such that
but summing over columns instead of rows. We conclude that n
MNA) € G(AYNG(AT) Vi @il > 2; lagl Vi

J:
J#i

Since ST1AS has the same eigenvalues as A, the above can be then

“improved” by 1. Ais invertible.

M(A) € G(S7TAS) N G((S—IAS)T) Vi 2. If all main diagonal elements are real and positive then all

_ _ L ) eigenvalues are in the right half plane.
for any choice of S. For it to be useful, S should be “simple”,

e.g., diagonal (see e.g. Corollaries 6.1.6 and 6.1.8). all eigenvalues are real and positive.

3. If Ais Hermitian with all diagonal elements positive, then

_ I
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Reducible matrices Irreducibly diagonally dominant
A matrix A € M, is called reducible if If A€ M, is called irreducibly diagonally dominant if
» n=1and A=0or i) Ais irreducible (= A has the SC property).
» n > 2 and there is a permutation matrix P € M, such ii) A is diagonally dominant,
that n
- B|C1}r lail > lagl Vi
PTAP = ;
0|D |}n—r J=1
JF#i
rn—r iii) For at least one row, i,
for some integer 1 < r <n-—1. n
A matrix A € M, that is not reducible is called irreducible. |aji| > Z |ajj|
A matrix is irreducible iff it describes a strongly connected j=1
directed graph, “A has the SC property". i#i
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Invertibility and stability, stronger result

If A€ M, is irreducibly diagonally dominant, then
1. Ais invertible.
2. If all main diagonal elements are real and positive then all
eigenvalues are in the right half plane.

3. If Ais Hermitian with all diagonal elements positive, then
all eigenvalues are real and positive.
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Perturbation theorems

Thm: Let A, E € M, and let A be diagonalizable,

A= SASL. Further, let \ be an eigenvalue of A+ E.
Then there is some eigenvalue \; of A such that

X=Xl < ISIHIISHITIEN = w(S)IIE]

for some particular matrix norms (e.g.,

- 11T TH2, 11T oo)-

Cor: If Ais a normal matrix, S is unitary

= [[ISlll2 = [[[S*|ll2 = 1. This gives
A=Al < I[E]]]2

indicating that normal matrices are perfectly conditioned
for eigenvalue computations.

I
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Perturbation cont’d

If both A and E are Hermitian, we can use Weyl's theorem
(here we assume the eigenvalues are indexed in non-decreasing
order):

M(E) S M(A+E) — M(A) < M(E)  Vk

We also have for this case

n 1/2
DoIMAFE) = MAP| < IE]
k=1

where || - || is the Frobenius norm.

_
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Perturbation of a simple eigenvalue

Let A\ be a simple eigenvalue of A € M,, and let y and x be
the corresponding left and right eigenvectors. Then y*x # 0.

Thm: Let A(t) € M, be differentiable at t = 0 and assume X

is a simple eigenvalue of A(0) with left and right

eigenvectors y and x. If A(t) is an eigenvalue of A(t) for
small t such that A(0) = A then

y*A'(0)x

/ —
Y(0) ="

Example: A(t) = A+ tE gives N'(0) = L.EX.

y

-
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Perturbation of eigenvalues cont’d

Errors in eigenvalues may also be related to the residual
r = A% — \%. Assume for example that A is diagonalizable
A= SAS™! and let % and \ be a given complex vector and
scalar, respectively. Then there is some eigenvalue of A such
that

[Irl]

[I%]]

1A= \i| < K(S)

(for details and conditions see book).
We conclude that a small residual implies a good
approximation of the eigenvalue.
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Perturbation of eigenvectors with simple eigenva-
lues

Thm: Let A(t) € M, be differentiable at t = 0 and assume
Ao is a simple eigenvalue of A(0) with left and right
eigenvectors yp and xg. If A(t) is an eigenvalue of A(t), it
has a right eigenvector x(t) for small t normalized such that

xox(t) = 1, with derivative
X'(0) = (\of — A(0)) (/ - Xoy°> A'(0)xq
Yo X0
BT denotes the Moore-Penrose pseudo inverse of a
matrix B.

See, e.g., J. R. Magnus and H. Neudecker. Matrix Differential
Calculus with Applications in Statistics and Econometrics.
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Perturbation of eigenvectors with simple eigenva-
lues: The real symmetric case

Assume that A € M,(R) is real symmetric matrix with
normalized eigenvectors x; and eigenvalues \;. Further assume
that A1 is a simple distinct eigenvalue. Let A= A+ B where
€ is a small scalar, B is real symmetric and let X; be an
eigenvector of A that approaches x; as ¢ — 0. Then a first
order approximation (in €) is

Warning: Non-unique derivative in the complex valued
case!
Warning, Warning Warning: No extension to multiple
eigenvalues!
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Chapter 8: Element-wise nonnegative matrices

Def: A matrix A = [ajj] € M, is nonnegative if a;; > 0 for all
i,j, and we write this as A > 0. (Note that this should not
be confused with the matrix being nonnegative definite!)

If a;j > 0 for all /,j, we say that A is positive and write this
as A > 0. (We write A> B to mean A— B > 0 etc.)

We also define |A| = [|ajj| ].

Typical applications where nonnegative or positive matrices

occur are problems in which we have matrices where the

elements correspond to
» probabilities (e.g., Markov chains)
» power levels or power gain factors (e.g., in power control
for wireless systems).
» Non-negative weights/costs in graphs.
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Nonnegative matrices: Some properties

Let A,B € M, and x € C". Then

> |Ax] < |A]x]

> |AB| < [A]|B]

» If A>0, then A” > 0; if A> 0, then A™ > 0.

» If A>0, x>0, and Ax =0 then A=0.

» If |A] < |B|, then ||A|]| < ||B]], for any absolute norm ||-||;
that is, a norm for which ||A|| = || |A] ||
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Nonnegative matrices: Spectral radius

Lemma: If Ac M,, A> 0, and if the row sums of A are
constant, then p(A) = |||A|||oo- If the column sums are
constant, then p(A) = |||Al||1.

The following theorem can be used to give upper and lower
bounds on the spectral radius of arbitrary matrices.

Thm: Let A, B € M,. If |A| < B, then p(A) < p(|A]) < p(B).
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Nonnegative matrices: Spectral radius

Thm: Let Aec M, and A> 0. Then

Thm: Let Ac M, and A > 0. If Ax = Ax and x > 0, then
A = p(A).
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Positive matrices Nonnegative matrices

For positive matrices we can say a little more. Generalization of Perron’s theorem to general non-negative

ices?
Perron’s theorem: If A € M, and A > 0, then matrices!

1. p(A) >0 Thm: If A€ M, and A > 0, then

. p(A) is an eigenvalue of A 1. p(A) is an eigenvalue of A

2
3. There is an x € R” with x > 0 such that Ax = p(A)x 2. There is a non-zero x € R” with x > 0 such that
4. p(A) is an algebraically (and geometrically) simple Ax = p(A)x _
eigenvalue of A For stronger results, we need a stronger assumption on A.
|A| < p(A) for every eigenvalue X # p(A) of A

6. [A/p(A)]™ — Las m — oo, where L = xy T, Ax = p(A)x,

yTA=p(A)y", x>0, y>0,and x"y =1.

p(A) is sometimes called a Perron root and the vector x = [x;]
a Perron vector if it is scaled such that Y7 ; x; = 1.

o
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Irreducible matrices Irreducible matrices

Reminder: A matrix A € M,,, n > 2 is called reducible if there Frobenius' theorem: If A€ M,,, A > 0 is irreducible, then
is a permutation matrix P € M, such that 1. p(A)>0
. B|C1}r 2. p(A) is an eigenvalue of A
P AP = [T‘T] Yn—r 3. Thereis an x € R” with x > 0 such that Ax = p(A)x
~ 4. p(A) is an algebraically (and geometrically) simple
roon-r eigenvalue of A

for some integer 1 < r <n-—1. 5. If there are exactly k eigenvalues with |A,| = p(A),
A matrix A € M, that is not reducible is called irreducible. p=1...,k thgn . _
Thm: A matrix A € M, with A > 0 is irreducible iff > Ap = p(A)e?PK p=01,... k -1 Sglfjt;llzoogdnered)

» If X\ is any eigenvalue of A, then \e
eigenvalue of Aforall p=10,1,..., k-1

» diag[A™] = 0 for all m that are not multiples of k (e.g.
m=1).

(I+A)"1>0
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Primitive matrices

A matrix A€ M,, A> 0is called primitive if

» A s irreducible

> p(A) is the only eigenvalue with [X\,| = p(A).
Thm: If Ae M,, A> 0 s primitive, then

im [A/p(A)]" = L

where L = xy ™, Ax = p(A)x, yTA=p(A)y', x >0,
y >0 and xTy =1.

Thm: If Ae M,, A> 0, then it is primitive iff A™ > 0 for
some m > 1.
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Stochastic matrices

A nonnegative matrix with all its row sums equal to 1 is called
a (row) stochastic matrix.

A column stochastic matrix is the transpose of a row
stochastic matrix.

If a matrix is both row and column stochastic it is called
doubly stochastic.
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Stochastic matrices cont’'d

The set of stochastic matrices in M,, is a compact convex set.

Let 1 =[1,1,...,1]". A matrix is stochastic if and only if
Al =1 = 1 is an eigenvector with eigenvalue +1 of all
stochastic matrices.

An example of a doubly stochastic matrix is A = [|u;|?] where
U = [ujj] is a unitary matrix. Also, notice that all permutation
matrices are doubly stochastic.

Thm: A matrix is doubly stochastic if and only if it can be
written as a convex combination of a finite number of
permutation matrices.

Corr: The maximum of a convex function on the set of doubly

stochastic matrices is attained at a permutation matrix!

27 /29

Example, Markov processes

Consider a discrete stochastic process that at each time
instant is in one of the states Sy,...,S,. Let pj; be the
probability to change from state S; to state S;. Note that the
transition matrix P = [pj], is a stochastic matrix.

Let u;(t) denote the probability of being in state S; at time t
and p(t) = [pa(t), .-, un(t)], then p(t + 1) = p(t)P.

If P is primitive (other terms are used in the statistics

literature), then u(t) — p® as t — oo where > = P, no
matter what (0) is. u® is called the stationary distribution.

Nice overview article: S. U. Pillai, T. Suel, S. Cha, The Perron
Frobenius Theorem: Some of its applications,
IEEE Signal Processing Magazine, Mar. 2005.

-
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Further results

Other books contain more results.
In “Matrix Theory”, vol. Il by Gantmacher, for example, you
can find results such as:

Thm: If A€ M,, A >0 is irreducible, then
(al —A) >0
for all a > p(A).

(Useful, for example, in connection with power control of
wireless systems).
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