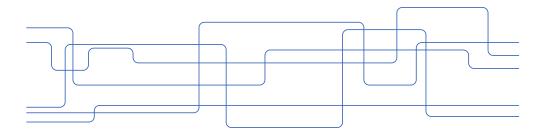


Lecture 7

- ► Chapter 6 + Appendix D: Location and perturbation of eigenvalues
- ▶ Some other results on perturbed eigenvalue problems
- ► Chapter 8: Nonnegative matrices

Magnus Jansson/Mats Bengtsson, May 11, 2016



Geršgorin circles

Geršgorin's Thm: Let A = D + B, where $D = diag(d_1, ..., d_n)$, and $B = [b_{ij}] \in M_n$ has zeros on the diagonal. Define

$$r_i'(B) = \sum_{\substack{j=1\\j\neq i}}^n |b_{ij}|$$

$$C_i(D, B) = \{ z \in \mathbf{C} : |z - d_i| \le r_i'(B) \}$$

Then, all eigenvalues of A are located in

$$\lambda_k(A) \in G(A) = \bigcup_{i=1}^n C_i(D,B) \quad \forall k$$

The $C_i(D, B)$ are called Gersgorin circles.

Eigenvalue Perturbation Results, Motivation

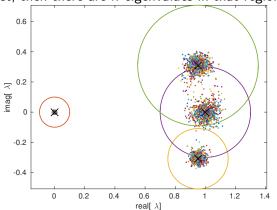
We know from a previous lecture that $\rho(A) \leq |||A|||$ for any matrix norm. That is, we know that all eigenvalues are in a circular disk with radius upper bounded by any matrix norm. More precise results?

What can be said about the eigenvalues and eigenvectors of $A + \epsilon B$ when ϵ is small?

2/29

Geršgorin circles, cont.

If G(A) contains a region of k circles that are disjoint from the rest, then there are k eigenvalues in that region.



Geršgorin, Improvements

Since A^T has the same eigenvalues as A, we can do the same but summing over columns instead of rows. We conclude that

$$\lambda_i(A) \in G(A) \cap G(A^T) \quad \forall i$$

Since $S^{-1}AS$ has the same eigenvalues as A, the above can be "improved" by

$$\lambda_i(A) \in G(S^{-1}AS) \cap G((S^{-1}AS)^T)$$

for any choice of S. For it to be useful, S should be "simple", e.g., diagonal (see e.g. Corollaries 6.1.6 and 6.1.8).

5 / 29

KTH VETENBER

Reducible matrices

A matrix $A \in M_n$ is called *reducible* if

- ightharpoonup n = 1 and A = 0 or
- ▶ $n \ge 2$ and there is a permutation matrix $P \in M_n$ such that

$$P^{T}AP = \left[\begin{array}{c|c} B & C \\ \hline 0 & D \end{array}\right] \begin{cases} r \\ n-r \end{cases}$$

for some integer 1 < r < n - 1.

A matrix $A \in M_n$ that is not reducible is called *irreducible*. A matrix is irreducible iff it describes a *strongly connected* directed graph, "A has the SC property".

Invertibility and stability

If $A \in M_n$ is strictly diagonally dominant such that

$$|a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| \qquad \forall i$$

then

- 1. A is invertible.
- 2. If all main diagonal elements are real and positive then all eigenvalues are in the right half plane.
- **3.** If *A* is Hermitian with all diagonal elements positive, then all eigenvalues are real and positive.

6 / 29

Irreducibly diagonally dominant

If $A \in M_n$ is called *irreducibly diagonally dominant* if

- i) A is irreducible (= A has the SC property).
- ii) A is diagonally dominant,

$$|a_{ii}| \ge \sum_{\substack{j=1\\j \ne i}}^{n} |a_{ij}| \qquad \forall i$$

iii) For at least one row, i,

$$|a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^n |a_{ij}|$$

Invertibility and stability, stronger result

If $A \in M_n$ is irreducibly diagonally dominant, then

- 1. A is invertible.
- 2. If all main diagonal elements are real and positive then all eigenvalues are in the right half plane.
- **3.** If *A* is Hermitian with all diagonal elements positive, then all eigenvalues are real and positive.

VETENSKAP OCH KORST

Perturbation theorems

Thm: Let $A, E \in M_n$ and let A be diagonalizable, $A = S\Lambda S^{-1}$. Further, let $\hat{\lambda}$ be an eigenvalue of A + E. Then there is *some* eigenvalue λ_i of A such that

$$|\hat{\lambda} - \lambda_i| \le |||S||| |||S^{-1}||| |||E||| = \kappa(S)|||E|||$$

for some particular matrix norms (e.g., $||| \cdot |||_1$, $||| \cdot |||_2$, $||| \cdot |||_\infty$).

Cor: If A is a normal matrix, S is unitary $\implies |||S|||_2 = |||S^{-1}|||_2 = 1. \text{ This gives}$ $||\hat{\lambda} - \lambda_i| < |||E|||_2$

indicating that normal matrices are perfectly conditioned for eigenvalue computations.

10 / 29

Perturbation cont'd

If both A and E are Hermitian, we can use Weyl's theorem (here we assume the eigenvalues are indexed in non-decreasing order):

$$\lambda_1(E) \le \lambda_k(A+E) - \lambda_k(A) \le \lambda_n(E) \quad \forall k$$

We also have for this case

$$\left[\sum_{k=1}^{n}|\lambda_k(A+E)-\lambda_k(A)|^2\right]^{1/2}\leq ||E||_2$$

where $||\cdot||_2$ is the Frobenius norm.

Perturbation of a simple eigenvalue

Let λ be a simple eigenvalue of $A \in M_n$ and let y and x be the corresponding left and right eigenvectors. Then $y^*x \neq 0$.

Thm: Let $A(t) \in M_n$ be differentiable at t=0 and assume λ is a simple eigenvalue of A(0) with left and right eigenvectors y and x. If $\lambda(t)$ is an eigenvalue of A(t) for small t such that $\lambda(0) = \lambda$ then

$$\lambda'(0) = \frac{y^*A'(0)x}{y^*x}$$

Example: A(t) = A + tE gives $\lambda'(0) = \frac{y^*Ex}{y^*x}$

11 / 29

Perturbation of eigenvalues cont'd

Errors in eigenvalues may also be related to the residual $r=A\hat{x}-\hat{\lambda}\hat{x}$. Assume for example that A is diagonalizable $A=S\Lambda S^{-1}$ and let \hat{x} and $\hat{\lambda}$ be a given complex vector and scalar, respectively. Then there is some eigenvalue of A such that

$$|\hat{\lambda} - \lambda_i| \le \kappa(S) \frac{||r||}{||\hat{x}||}$$

(for details and conditions see book). We conclude that a small residual implies a good approximation of the eigenvalue.

13 / 29

Perturbation of eigenvectors with simple eigenvalues

Thm: Let $A(t) \in M_n$ be differentiable at t = 0 and assume λ_0 is a simple eigenvalue of A(0) with left and right eigenvectors y_0 and x_0 . If $\lambda(t)$ is an eigenvalue of A(t), it has a right eigenvector x(t) for small t normalized such that

$$x_0^*x(t)=1$$
, with derivative

$$x'(0) = (\lambda_0 I - A(0))^{\dagger} \left(I - \frac{x_0 y_0^*}{y_0^* x_0}\right) A'(0) x_0$$

 B^{\dagger} denotes the Moore-Penrose pseudo inverse of a matrix B.

See, e.g., J. R. Magnus and H. Neudecker. *Matrix Differential Calculus with Applications in Statistics and Econometrics*.

Literature with perturbation results

J. R. Magnus and H. Neudecker.

Matrix Differential Calculus with Applications in Statistics and Econometrics.

John Wiley & Sons Ltd., 1988, rev. 1999.

H. Krim and P. Forster. *Projections on unstructured subspaces. IEEE Trans. SP*, 44(10):2634–2637, Oct. 1996.

J. Moro. J. V. Burke. and M. L. Overton.

On the Lidskii-Vishik- Lyusternik perturbation theory for eigenvalues of matrices with arbitrary Jordan structure.

SIAM Journ. Matrix Anal. and Appl., 18(4):793-817, 1997.

F. Rellich. *Perturbation Theory of Eigenvalue Problems*. Gordon & Breach, 1969.

J. Wilkinson. *The Algebraic Eigenvalue Problem*. Clarendon Press. 1965.

14 / 29

Perturbation of eigenvectors with simple eigenvalues: The real symmetric case

Assume that $A \in M_n(\mathbf{R})$ is real symmetric matrix with normalized eigenvectors x_i and eigenvalues λ_i . Further assume that λ_1 is a simple distinct eigenvalue. Let $\hat{A} = A + \epsilon B$ where ϵ is a small scalar, B is real symmetric and let \hat{x}_1 be an eigenvector of \hat{A} that approaches x_1 as $\epsilon \to 0$. Then a first order approximation (in ϵ) is

$$\hat{x}_1 - x_1 = \epsilon \sum_{k=2}^n \frac{x_k^T B x_1}{\lambda_1 - \lambda_k} x_k$$

Warning: Non-unique derivative in the complex valued case!

Warning, Warning Warning: No extension to multiple eigenvalues!

Chapter 8: Element-wise nonnegative matrices

Def: A matrix $A = [a_{ij}] \in M_{n,r}$ is nonnegative if $a_{ij} \ge 0$ for all i,j, and we write this as $A \ge 0$. (Note that this should not be confused with the matrix being nonnegative definite!) If $a_{ij} > 0$ for all i,j, we say that A is positive and write this as A > 0. (We write A > B to mean A - B > 0 etc.)

We also define $|A| = [|a_{ij}|]$.

Typical applications where nonnegative or positive matrices occur are problems in which we have matrices where the elements correspond to

- probabilities (e.g., Markov chains)
- power levels or power gain factors (e.g., in power control for wireless systems).
- ▶ Non-negative weights/costs in graphs.

17 / 29

Nonnegative matrices: Spectral radius

Lemma: If $A \in M_n$, $A \ge 0$, and if the row sums of A are constant, then $\rho(A) = |||A|||_{\infty}$. If the column sums are constant, then $\rho(A) = |||A|||_1$.

The following theorem can be used to give upper and lower bounds on the spectral radius of **arbitrary** matrices.

Thm: Let $A, B \in M_n$. If $|A| \leq B$, then $\rho(A) \leq \rho(|A|) \leq \rho(B)$.

Nonnegative matrices: Some properties

Let $A, B \in M_n$ and $x \in \mathbb{C}^n$. Then

- $|Ax| \leq |A||x|$
- $ightharpoonup |AB| \le |A||B|$
- ▶ If $A \ge 0$, then $A^m \ge 0$; if A > 0, then $A^m > 0$.
- ▶ If A > 0, x > 0, and Ax = 0 then A = 0.
- ▶ If $|A| \le |B|$, then $||A|| \le ||B||$, for any absolute norm $||\cdot||$; that is, a norm for which ||A|| = ||A||.

18 / 29

Nonnegative matrices: Spectral radius

Thm: Let $A \in M_n$ and $A \ge 0$. Then

$$\min_{i} \sum_{j=1}^{n} a_{ij} \leq \rho(A) \leq \max_{i} \sum_{j=1}^{n} a_{ij}$$

$$\min_{j} \sum_{i=1}^{n} a_{ij} \leq \rho(A) \leq \max_{j} \sum_{i=1}^{n} a_{ij}$$

Thm: Let $A \in M_n$ and $A \ge 0$. If $Ax = \lambda x$ and x > 0, then $\lambda = \rho(A)$.

Positive matrices

For positive matrices we can say a little more.

Perron's theorem: If $A \in M_n$ and A > 0, then

- **1.** $\rho(A) > 0$
- 2. $\rho(A)$ is an eigenvalue of A
- 3. There is an $x \in \mathbb{R}^n$ with x > 0 such that $Ax = \rho(A)x$
- 4. $\rho(A)$ is an algebraically (and geometrically) simple eigenvalue of A
- **5.** $|\lambda| < \rho(A)$ for every eigenvalue $\lambda \neq \rho(A)$ of A
- **6.** $[A/\rho(A)]^m \to L$ as $m \to \infty$, where $L = xy^T$, $Ax = \rho(A)x$, $y^T A = \rho(A)y^T$, x > 0, y > 0, and $x^T y = 1$.

 $\rho(A)$ is sometimes called a Perron root and the vector $x = [x_i]$ a Perron vector if it is scaled such that $\sum_{i=1}^{n} x_i = 1$.

21 / 29

Irreducible matrices

Reminder: A matrix $A \in M_n$, $n \ge 2$ is called *reducible* if there is a permutation matrix $P \in M_n$ such that

$$P^{T}AP = \left[\begin{array}{c|c} B & C \\ \hline 0 & D \end{array}\right] \begin{cases} r \\ n-r \end{cases}$$

for some integer $1 \le r \le n-1$.

A matrix $A \in M_n$ that is not reducible is called *irreducible*.

Thm: A matrix $A \in M_n$ with $A \ge 0$ is irreducible iff $(I + A)^{n-1} > 0$

Nonnegative matrices

Generalization of Perron's theorem to general non-negative matrices?

Thm: If $A \in M_n$ and $A \ge 0$, then

- 1. $\rho(A)$ is an eigenvalue of A
- 2. There is a non-zero $x \in \mathbb{R}^n$ with $x \ge 0$ such that $Ax = \rho(A)x$

For stronger results, we need a stronger assumption on A.

22 / 29

Irreducible matrices

Frobenius' theorem: If $A \in M_n$, $A \ge 0$ is irreducible, then

- **1.** $\rho(A) > 0$
- 2. $\rho(A)$ is an eigenvalue of A
- **3**. There is an $x \in \mathbb{R}^n$ with x > 0 such that $Ax = \rho(A)x$
- 4. $\rho(A)$ is an algebraically (and geometrically) simple eigenvalue of A
- 5. If there are exactly k eigenvalues with $|\lambda_p| = \rho(A)$, $p = 1, \dots, k$, then
 - $\lambda_p = \rho(A)e^{i2\pi p/k}$, $p = 0, 1, \dots, k-1$ (suitably ordered)
 - If λ is any eigenvalue of A, then $\lambda e^{i2\pi p/k}$ is also an eigenvalue of A for all $p = 0, 1, \dots, k-1$
 - ▶ diag[A^m] ≡ 0 for all m that are not multiples of k (e.g. m = 1).

Primitive matrices

A matrix $A \in M_n$, $A \ge 0$ is called *primitive* if

- ► *A* is irreducible
- $\rho(A)$ is the only eigenvalue with $|\lambda_p| = \rho(A)$.

Thm: If $A \in M_n$, $A \ge 0$ is primitive, then

$$\lim_{m\to\infty} [A/\rho(A)]^m = L$$

where $L = xy^T$, $Ax = \rho(A)x$, $y^TA = \rho(A)y^T$, x > 0, y > 0, and $x^Ty = 1$.

Thm: If $A \in M_n$, $A \ge 0$, then it is primitive iff $A^m > 0$ for some $m \ge 1$.

Stochastic matrices

A nonnegative matrix with all its row sums equal to 1 is called a (row) stochastic matrix.

A column stochastic matrix is the transpose of a row stochastic matrix.

If a matrix is both row and column stochastic it is called doubly stochastic.

25 / 29

Stochastic matrices cont'd

The set of stochastic matrices in M_n is a compact convex set.

Let $\mathbf{1} = [1, 1, \dots, 1]^T$. A matrix is stochastic if and only if $A\mathbf{1} = \mathbf{1} \Longrightarrow \mathbf{1}$ is an eigenvector with eigenvalue $+\mathbf{1}$ of all stochastic matrices.

An example of a doubly stochastic matrix is $A = [|u_{ij}|^2]$ where $U = [u_{ij}]$ is a unitary matrix. Also, notice that all permutation matrices are doubly stochastic.

Thm: A matrix is doubly stochastic if and only if it can be written as a convex combination of a finite number of permutation matrices.

Corr: The maximum of a convex function on the set of doubly stochastic matrices is attained at a permutation matrix!

Example, Markov processes

Consider a discrete stochastic process that at each time instant is in one of the states S_1, \ldots, S_n . Let p_{ij} be the probability to change from state S_i to state S_j . Note that the transition matrix $P = [p_{ij}]$, is a stochastic matrix. Let $\mu_i(t)$ denote the probability of being in state S_i at time t and $\mu(t) = [\mu_1(t), \ldots, \mu_n(t)]$, then $\mu(t+1) = \mu(t)P$.

If P is primitive (other terms are used in the statistics literature), then $\mu(t) \to \mu^{\infty}$ as $t \to \infty$ where $\mu^{\infty} = \mu^{\infty} P$, no matter what $\mu(0)$ is. μ^{∞} is called the stationary distribution.

Nice overview article: S. U. Pillai, T. Suel, S. Cha, *The Perron Frobenius Theorem: Some of its applications*, IEEE Signal Processing Magazine, Mar. 2005.

Further results

Other books contain more results. In "Matrix Theory", vol. II by Gantmacher, for example, you can find results such as:

Thm: If $A \in M_n$, $A \ge 0$ is irreducible, then

$$(\alpha I - A)^{-1} > 0$$

for all $\alpha > \rho(A)$.

(Useful, for example, in connection with power control of wireless systems).