KTH, Matematik, Maurice Duits

SF2795 Fourier Analysis Homework Assignment for Lecture 14

1. (3.3.3) Check that if $f \in \mathbb{L}^1$, if \hat{f} is an entire functions of exponential type less than or equal to $2\pi T$, and if B > T, then

$$|\hat{f}(\gamma)| \le \text{constant} \times e^{2\pi BR \sin \theta}$$

on the close upper half place. Hint: Apply Phragmén -Lindelöf to $e^{2\pi i B \gamma} \hat{f}(\gamma)$.

2. (3.4.1) Check that a rational function $\hat{f} \in \mathbb{L}^2(\mathbb{R})$ is Hardy iff all its poles lie in the lower half plane.

Hint: Use Cauchy's Theorem to prove that $f = \hat{f}^{\vee} = 0$ for x < 0 if the poles lie in the lower half plane.

3. (3.4.2) Check that the functions

$$e_n = \frac{1}{\sqrt{\pi}(i\gamma - 1)} \left(\frac{i\gamma + 1}{i\gamma - 1}\right)^n, \qquad n = 0, \pm 1, \pm 2, \dots$$

form a unit perpendicular family.

4. (3.4.3) Check that $e_n: n \geq 0$ spans the Hardy space H^{2+} , while $e_n: n < 0$ spans H^{2-} for n < 0. Hint: Use exercise (3.4.1) to check that e_n belongs to H^{2+} for $n \geq 0$ and to H^{2-} for n < 0. Then prove that the whole family space \mathbb{L}^2 . The fact that $(i\gamma - 1)^{-1}(i\gamma + 1)$ maps \mathbb{R} onto the unit circle is helpful.