MATRIX ALGEBRA MAGNUS JANSSON Deadline: 2016–05–11, 10.00

Homework # 6

Numbers below refer to problems in Horn, Johnson "Matrix analysis." A number 1.1.P2 means Problem 2 in Section 1.1.

- 1. (7.1.P1) Let $A = [a_{ij}] \in M_n$ be psd. Why is $a_{ii}a_{jj} \ge |a_{ij}|^2$ for all distinct $i, j \in \{1, \ldots, n\}$? If A is pd, why is $a_{ii}a_{jj} > |a_{ij}|^2$ for all distinct $i, j \in \{1, \ldots, n\}$? If there is a pair of distinct indices i, j such that $a_{ii}a_{jj} = |a_{ij}|^2$, why is A singular?
- 2. (7.2.P5)
 - (a) Verify that $L_1 = \begin{bmatrix} 2 & 0 \\ 1 & \sqrt{3} \end{bmatrix}$ provides the Cholesky factorization of the pd matrix $A_1 = \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix}$, and that $4 \cdot 4 \ge 2^2 \cdot (\sqrt{3})^2 = \det A_1$.
 - (b) Let $A = [a_{ij}] \in M_n$ be pd and let $A = LL^*$ be a Cholesky factorization. Let $L = [c_{ij}]$ such that $c_{ij} = 0$ for j > i. Show that det $A = \prod_{i=1}^{n} c_{ii}^2$. Show that each $a_{ii} = |c_{i1}|^2 + \ldots + |c_{i,i-1}|^2 + c_{ii}^2 \ge c_{ii}^2$, with equality iff $c_{ik} = 0$ for all $k = 1, \ldots, i 1$. Deduce Hadamard's inequality det $A \le \prod_{i=1}^{n} a_{ii}$ with equality iff A is diagonal.
- 3. (7.3.P7 new and old) Let $A \in M_{m,n}$ and let $A = V\Sigma W^*$ be a singular value decomposition. Define $A^{\dagger} = W\Sigma^{\dagger}V^*$, in which Σ^{\dagger} is obtained from Σ by first replacing each nonzero singular value with its inverse and then transposing. Show that:
 - (a) AA^{\dagger} and $A^{\dagger}A$ are Hermitian
 - (b) $AA^{\dagger}A = A$
 - (c) $A^{\dagger}AA^{\dagger} = A^{\dagger}$
 - (d) $A^{\dagger} = A^{-1}$ if A is square and nonsingular
 - (e) $(A^{\dagger})^{\dagger} = A$
 - (f) A^{\dagger} is uniquely determined by the properties (a)-(c)

The matrix A^{\dagger} is the Moore-Penrose generalized or pseudo inverse of A.

- 4. (7.3.P10) Let $A = V\Sigma W^*$ be a singular value decomposition of $A \in M_{m,n}$ and let $r = \operatorname{rank} A$. Show that:
 - (a) The last n-r columns of W are an orthonormal basis for the null space of A.
 - (b) The first r columns of V are an orthonormal basis for the range of A.
 - (c) The last m-r columns of V are an orthonormal basis for the null space of A^* .
 - (d) The first r columns of W are an orthonormal basis for the range of A^* .
- 5. We know that if A and B are pd then $A \circ B$ is pd. Show that $A \circ B$ can be pd even if not both A and B are pd.
- 6. (7.7.P14) Let $A, B \in M_n$ be pd and let $\alpha \in (0, 1)$. Show that $\alpha A^{-1} + (1 \alpha)B^{-1} \ge (\alpha A + (1 \alpha)B)^{-1}$, with equality iff A = B. Thus the function $f(t) = t^{-1}$ is strictly convex on the set of pd matrices.
- 7. (7.8.P12, similar to 7.8.P21 in old edition) Let $A = [a_{ij}] \in M_n$ be pd. Partition $A = \begin{bmatrix} A_{11} & x \\ x^* & a_{nn} \end{bmatrix}$, in which $A_{11} \in M_{n-1}$. Use the Cauchy expansion (0.8.5.10) or the Schur complement to show that det $A = (a_{nn} - x^*A_{11}^{-1}x) \det A_{11} \leq a_{nn} \det A_{11}$, with equality iff x = 0. Use this observation to give a proof by induction of Hadamard's inequality (7.8.2) and its case of equality.