
DT2118
Speech and Speaker Recognition

Language Modelling

Giampiero Salvi

KTH/CSC/TMH giampi@kth.se

VT 2015

1 / 56

http://www.kth.se
http://www.csc.kth.se
http://www.speech.kth.se
mailto:giampi@kth.se

Outline

Introduction

Formal Language Theory

Stochastic Language Models (SLM)
N-gram Language Models
N-gram Smoothing
Class N-grams
Adaptive Language Models

Language Model Evaluation

2 / 56

Outline

Introduction

Formal Language Theory

Stochastic Language Models (SLM)
N-gram Language Models
N-gram Smoothing
Class N-grams
Adaptive Language Models

Language Model Evaluation

3 / 56

Components of ASR System

Speech Signal
Spectral
Analysis

Feature
Extraction

Search
and Match

Recognised Words

Acoustic Models

Lexical Models

Language Models

Representation

Constraints - Knowledge
Decoder

Language Models

4 / 56

Why do we need language models?

Bayes’ rule:

P(words|sounds) =
P(sounds|words)P(words)

P(sounds)

where
P(words): a priori probability of the words
(Language Model)

We could use non informative priors
(P(words) = 1/N), but. . .

5 / 56

Branching Factor

I if we have N words in the dictionary

I at every word boundary we have to consider N
equally likely alternatives

I N can be in the order of millions

word

word1

word2

. . .

wordN

6 / 56

Ambiguity

“ice cream” vs “I scream”

/aI s k ô i: m/

7 / 56

Language Models in ASR

We want to:

1. limit the branching factor in the recognition
network

2. augment and complete the acoustic
probabilities

I we are only interested to know if the sequence
of words is plausible grammatically or not

I this kind of grammar is integrated in the
recognition network prior to decoding

8 / 56

Language Models in Dialogue Systems

I we want to assign a class to each word (noun,
verb, attribute. . . parts of speech)

I parsing is usually performed on the output of a
speech recogniser

The grammar is used twice in a Dialogue System!!

9 / 56

Language Models in ASR

I small vocabulary: often formal grammar
specified by hand

I example: loop of digits as in the HTK exercise

I large vocabulary: often stochastic grammar
estimated from data

10 / 56

Outline

Introduction

Formal Language Theory

Stochastic Language Models (SLM)
N-gram Language Models
N-gram Smoothing
Class N-grams
Adaptive Language Models

Language Model Evaluation

11 / 56

Formal Language Theory

grammar: formal specification of permissible
structures for the language

parser: algorithm that can analyse a sentence
and determine if its structure is
compliant with the grammar

12 / 56

Chomsky’s formal grammar

Noam Chomsky: linguist, philosopher, . . .

G = (V ,T ,P , S)

where

V : set of non-terminal constituents
T : set of terminals (lexical items)
P : set of production rules
S : start symbol

13 / 56

Chomsky’s formal grammar

Noam Chomsky: linguist, philosopher, . . .

G = (V ,T ,P , S)

where

V : set of non-terminal constituents
T : set of terminals (lexical items)
P : set of production rules
S : start symbol

13 / 56

Example
S = sentence
V = {NP (noun phrase),

NP1, VP (verb
phrase), NAME, ADJ,
V (verb), N (noun)}

T = {Mary , person , loves
, that , . . . }

P = {S → NP VP
NP → NAME
NP → ADJ NP1
NP1 → N
VP → VERB NP
NAME → Mary
V → loves
N → person
ADJ → that }

S

NP

NAME

Mary

VP

V

loves

NP

ADJ

that

NP1

N

person

14 / 56

Example
S = sentence
V = {NP (noun phrase),

NP1, VP (verb
phrase), NAME, ADJ,
V (verb), N (noun)}

T = {Mary , person , loves
, that , . . . }

P = {S → NP VP
NP → NAME
NP → ADJ NP1
NP1 → N
VP → VERB NP
NAME → Mary
V → loves
N → person
ADJ → that }

S

NP

NAME

Mary

VP

V

loves

NP

ADJ

that

NP1

N

person

14 / 56

Chomsky’s hierarchy

Greek letters: sequence of terminals or
non-terminals
Upper-case Latin letters: single non-terminal
Lower-case Latin letters: single terminal

Types Constraints Automata
Phrase structure
grammar

α → β. This is the most general
grammar

Turing ma-
chine

Context-sensitive
grammar

length of α ≤ length of β Linear
bounded

Context-free
grammar

A → β. Equivalent to A → w ,A →
BC

Push down

Regular grammar A→ w ,A→ wB Finite-state

Context-free and regular grammars are used in
practice

15 / 56

Chomsky’s hierarchy

Greek letters: sequence of terminals or
non-terminals
Upper-case Latin letters: single non-terminal
Lower-case Latin letters: single terminal

Types Constraints Automata
Phrase structure
grammar

α → β. This is the most general
grammar

Turing ma-
chine

Context-sensitive
grammar

length of α ≤ length of β Linear
bounded

Context-free
grammar

A → β. Equivalent to A → w ,A →
BC

Push down

Regular grammar A→ w ,A→ wB Finite-state

Context-free and regular grammars are used in
practice

15 / 56

Are languages context-free?

Mostly true, with exceptions

Swiss German:
“. . . das mer d’chind em Hans es huus lönd häfte
aastriiche”

Word-by-word:
“. . . that we the children Hans the house let help
paint”

Translation:
“. . . that we let the children help Hans paint the
house”

16 / 56

Parsers

I assign each word in a sentence to a part of
speech

I originally developed for programming languages
(no ambiguities)

I only available for context-free and regular
grammars

I top-down: start with S and generate rules until
you reach the words (terminal symbols)

I bottom-up: start with the words and work your
way up until you reach S

17 / 56

Example: Top-down parser

Parts of speech Rules
S

NP VP S → NP VP
NAME VP NP → NAME
Mary VP NAME → Mary
Mary V NP VP → V NP
Mary loves NP V → loves
Mary loves ADJ NP1 NP → ADJ NP1
Mary loves that NP1 ADJ → that
Mary loves that N NP1 → N
Mary loves that person N → person

18 / 56

Example: Top-down parser

Parts of speech Rules
S
NP VP S → NP VP

NAME VP NP → NAME
Mary VP NAME → Mary
Mary V NP VP → V NP
Mary loves NP V → loves
Mary loves ADJ NP1 NP → ADJ NP1
Mary loves that NP1 ADJ → that
Mary loves that N NP1 → N
Mary loves that person N → person

18 / 56

Example: Top-down parser

Parts of speech Rules
S
NP VP S → NP VP
NAME VP NP → NAME

Mary VP NAME → Mary
Mary V NP VP → V NP
Mary loves NP V → loves
Mary loves ADJ NP1 NP → ADJ NP1
Mary loves that NP1 ADJ → that
Mary loves that N NP1 → N
Mary loves that person N → person

18 / 56

Example: Top-down parser

Parts of speech Rules
S
NP VP S → NP VP
NAME VP NP → NAME
Mary VP NAME → Mary

Mary V NP VP → V NP
Mary loves NP V → loves
Mary loves ADJ NP1 NP → ADJ NP1
Mary loves that NP1 ADJ → that
Mary loves that N NP1 → N
Mary loves that person N → person

18 / 56

Example: Top-down parser

Parts of speech Rules
S
NP VP S → NP VP
NAME VP NP → NAME
Mary VP NAME → Mary
Mary V NP VP → V NP

Mary loves NP V → loves
Mary loves ADJ NP1 NP → ADJ NP1
Mary loves that NP1 ADJ → that
Mary loves that N NP1 → N
Mary loves that person N → person

18 / 56

Example: Top-down parser

Parts of speech Rules
S
NP VP S → NP VP
NAME VP NP → NAME
Mary VP NAME → Mary
Mary V NP VP → V NP
Mary loves NP V → loves

Mary loves ADJ NP1 NP → ADJ NP1
Mary loves that NP1 ADJ → that
Mary loves that N NP1 → N
Mary loves that person N → person

18 / 56

Example: Top-down parser

Parts of speech Rules
S
NP VP S → NP VP
NAME VP NP → NAME
Mary VP NAME → Mary
Mary V NP VP → V NP
Mary loves NP V → loves
Mary loves ADJ NP1 NP → ADJ NP1

Mary loves that NP1 ADJ → that
Mary loves that N NP1 → N
Mary loves that person N → person

18 / 56

Example: Top-down parser

Parts of speech Rules
S
NP VP S → NP VP
NAME VP NP → NAME
Mary VP NAME → Mary
Mary V NP VP → V NP
Mary loves NP V → loves
Mary loves ADJ NP1 NP → ADJ NP1
Mary loves that NP1 ADJ → that

Mary loves that N NP1 → N
Mary loves that person N → person

18 / 56

Example: Top-down parser

Parts of speech Rules
S
NP VP S → NP VP
NAME VP NP → NAME
Mary VP NAME → Mary
Mary V NP VP → V NP
Mary loves NP V → loves
Mary loves ADJ NP1 NP → ADJ NP1
Mary loves that NP1 ADJ → that
Mary loves that N NP1 → N

Mary loves that person N → person

18 / 56

Example: Top-down parser

Parts of speech Rules
S
NP VP S → NP VP
NAME VP NP → NAME
Mary VP NAME → Mary
Mary V NP VP → V NP
Mary loves NP V → loves
Mary loves ADJ NP1 NP → ADJ NP1
Mary loves that NP1 ADJ → that
Mary loves that N NP1 → N
Mary loves that person N → person

18 / 56

Example: Bottom-up parser

Parts of speech Rules
Mary loves that person

NAME loves that person NAME → Mary
NAME V that person V → loves
NAME V ADJ person ADJ → that
NAME V ADJ N N → person
NP V ADJ N NP → NAME
NP V ADJ NP1 NP1 → N
NP V NP NP → ADJ NP1
NP VP VP → V NP
S S → NP VP

19 / 56

Example: Bottom-up parser

Parts of speech Rules
Mary loves that person
NAME loves that person NAME → Mary

NAME V that person V → loves
NAME V ADJ person ADJ → that
NAME V ADJ N N → person
NP V ADJ N NP → NAME
NP V ADJ NP1 NP1 → N
NP V NP NP → ADJ NP1
NP VP VP → V NP
S S → NP VP

19 / 56

Example: Bottom-up parser

Parts of speech Rules
Mary loves that person
NAME loves that person NAME → Mary
NAME V that person V → loves

NAME V ADJ person ADJ → that
NAME V ADJ N N → person
NP V ADJ N NP → NAME
NP V ADJ NP1 NP1 → N
NP V NP NP → ADJ NP1
NP VP VP → V NP
S S → NP VP

19 / 56

Example: Bottom-up parser

Parts of speech Rules
Mary loves that person
NAME loves that person NAME → Mary
NAME V that person V → loves
NAME V ADJ person ADJ → that

NAME V ADJ N N → person
NP V ADJ N NP → NAME
NP V ADJ NP1 NP1 → N
NP V NP NP → ADJ NP1
NP VP VP → V NP
S S → NP VP

19 / 56

Example: Bottom-up parser

Parts of speech Rules
Mary loves that person
NAME loves that person NAME → Mary
NAME V that person V → loves
NAME V ADJ person ADJ → that
NAME V ADJ N N → person

NP V ADJ N NP → NAME
NP V ADJ NP1 NP1 → N
NP V NP NP → ADJ NP1
NP VP VP → V NP
S S → NP VP

19 / 56

Example: Bottom-up parser

Parts of speech Rules
Mary loves that person
NAME loves that person NAME → Mary
NAME V that person V → loves
NAME V ADJ person ADJ → that
NAME V ADJ N N → person
NP V ADJ N NP → NAME

NP V ADJ NP1 NP1 → N
NP V NP NP → ADJ NP1
NP VP VP → V NP
S S → NP VP

19 / 56

Example: Bottom-up parser

Parts of speech Rules
Mary loves that person
NAME loves that person NAME → Mary
NAME V that person V → loves
NAME V ADJ person ADJ → that
NAME V ADJ N N → person
NP V ADJ N NP → NAME
NP V ADJ NP1 NP1 → N

NP V NP NP → ADJ NP1
NP VP VP → V NP
S S → NP VP

19 / 56

Example: Bottom-up parser

Parts of speech Rules
Mary loves that person
NAME loves that person NAME → Mary
NAME V that person V → loves
NAME V ADJ person ADJ → that
NAME V ADJ N N → person
NP V ADJ N NP → NAME
NP V ADJ NP1 NP1 → N
NP V NP NP → ADJ NP1

NP VP VP → V NP
S S → NP VP

19 / 56

Example: Bottom-up parser

Parts of speech Rules
Mary loves that person
NAME loves that person NAME → Mary
NAME V that person V → loves
NAME V ADJ person ADJ → that
NAME V ADJ N N → person
NP V ADJ N NP → NAME
NP V ADJ NP1 NP1 → N
NP V NP NP → ADJ NP1
NP VP VP → V NP

S S → NP VP

19 / 56

Example: Bottom-up parser

Parts of speech Rules
Mary loves that person
NAME loves that person NAME → Mary
NAME V that person V → loves
NAME V ADJ person ADJ → that
NAME V ADJ N N → person
NP V ADJ N NP → NAME
NP V ADJ NP1 NP1 → N
NP V NP NP → ADJ NP1
NP VP VP → V NP
S S → NP VP

19 / 56

Top-down vs bottom-up parsers

I Top-down characteristics:
+ very predictive
+ only consider grammatical combinations
– predict constituents that do not have a match in

the text

I Bottom-up characteristics:
+ check input text only once
+ suitable for robust language processing
– may build trees that do not lead to full parse

I All in all, similar performance

20 / 56

Chart parsing (dynamic programming)

Name[1,1] Mary

Mary loves that person

21 / 56

Chart parsing (dynamic programming)

S NP ° VP
V[2,2] loves

Name Mary
NP Name

Mary loves that person

21 / 56

Chart parsing (dynamic programming)

V loves
VP V °NP

Name Mary
NP Name
S NP °VP

Mary loves that person

ADJ that

21 / 56

Chart parsing (dynamic programming)

ADJ that

NP ADJ ° NP1
S NP °VP

V loves
VP V °NP

Name Mary
NP Name
S NP °VP

Mary loves that person

N person

21 / 56

Chart parsing (dynamic programming)

ADJ that

NP ADJ ° NP1
S NP °VP

V loves
VP V °NP

Name Mary
NP Name
S NP °VP

Mary loves that person

N person
NP1 N

NP ADJ NP1

VP V NP

S NP VP

21 / 56

Outline

Introduction

Formal Language Theory

Stochastic Language Models (SLM)
N-gram Language Models
N-gram Smoothing
Class N-grams
Adaptive Language Models

Language Model Evaluation

22 / 56

Stochastic Language Models (SLM)

1. formal grammars lack coverage (for general
domains)

2. spoken language does not follow strictly the
grammar

Model sequences of words statistically:

P(W) = P(w1w2 . . .wn)

23 / 56

Probabilistic Context-free grammars
(PCFGs)

Assign probabilities to generative rules:

P(A→ α|G)

Then calculate probability of generating a word
sequence w1w2 . . .wn as probability of the rules
necessary to go from S to w1w2 . . .wn:

P(S ⇒ w1w2 . . .wn|G)

24 / 56

Training PCFGs

If annotated corpus, Maximum Likelihood estimate:

P(A→ αj) =
C (A→ αj)∑m
i=1 C (A→ αi)

If non-annotated corpus: inside-outside algorithm
(similar to HMM training, forward-backward)

25 / 56

Independence assumption

S

NP

NAME

Mary

VP

V

loves

NP

ADJ

that

NP1

N

person
26 / 56

Inside-outside probabilities
Chomsky’s normal forms: Ai → AmAn or Ai → wl

inside(s,Ai , t) = P(Ai ⇒ wsws+1 . . .wt)

outside(s,Ai , t) = P(S ⇒ w1 . . .ws−1 Ai wt+1 . . .wT)

Ai

w w w w w ws s t t T1 1 1...- +

S

27 / 56

Probabilistic Context-free
grammars:limitations

I probabilities help sorting alternative
explanations, but

I still problem with coverage: the production
rules are hand made

P(A→ α|G)

28 / 56

N-gram Language Models

Flat model: no hierarchical structure

P(W) = P(w1,w2, . . . ,wn)

= P(w1)P(w2|w1)P(w3|w1,w2) · · ·P(wn|w1,w2 . . . ,wn−1)

=
n∏

i=1

P(wi |w1,w2, . . . ,wi−1)

Approximations:
P(wi |w1,w2, . . . ,wi−1) = P(wi) (Unigram)
P(wi |w1,w2, . . . ,wi−1) = P(wi |wi−1) (Bigram)
P(wi |w1,w2, . . . ,wi−1) = P(wi |wi−2,wi−1) (Trigram)
P(wi |w1,w2, . . . ,wi−1) = P(wi |wi−N+1, . . . ,wi−1) (N-gram)

29 / 56

N-gram Language Models

Flat model: no hierarchical structure

P(W) = P(w1,w2, . . . ,wn)

= P(w1)P(w2|w1)P(w3|w1,w2) · · ·P(wn|w1,w2 . . . ,wn−1)

=
n∏

i=1

P(wi |w1,w2, . . . ,wi−1)

Approximations:
P(wi |w1,w2, . . . ,wi−1) = P(wi) (Unigram)
P(wi |w1,w2, . . . ,wi−1) = P(wi |wi−1) (Bigram)
P(wi |w1,w2, . . . ,wi−1) = P(wi |wi−2,wi−1) (Trigram)
P(wi |w1,w2, . . . ,wi−1) = P(wi |wi−N+1, . . . ,wi−1) (N-gram)

29 / 56

Example (Bigram)

P(Mary , loves, that, person) =

P(Mary |<s>)P(loves|Mary)P(that|loves)

P(person|that)P(</s>|person)

30 / 56

N-gram estimation (Maximum Likelihood)

P(wi |wi−N+1, . . . ,wi−1) =
C (

N︷ ︸︸ ︷
wi−N+1, . . . ,wi−1,wi)

C (wi−N+1, . . . ,wi−1︸ ︷︷ ︸
N−1

)

=
C (wi−N+1, . . . ,wi−1,wi)∑
wi
C (wi−N+1, . . . ,wi−1,wi)

Problem: data sparseness

31 / 56

N-gram estimation (Maximum Likelihood)

P(wi |wi−N+1, . . . ,wi−1) =
C (

N︷ ︸︸ ︷
wi−N+1, . . . ,wi−1,wi)

C (wi−N+1, . . . ,wi−1︸ ︷︷ ︸
N−1

)

=
C (wi−N+1, . . . ,wi−1,wi)∑
wi
C (wi−N+1, . . . ,wi−1,wi)

Problem: data sparseness

31 / 56

N-gram estimation example

Corpus:
1: John read her book
2: I read a different book
3: John read a book by Mulan

P(John| < s >) = C(<s>,John)
C(<s>) = 2

3

P(read|John) = C(John,read)

C(John)
= 2

2

P(a|read) = C(read,a)
C(read)

= 2
3

P(book|a) = C(a,book)
C(a) = 1

2

P(< /s > |book) =
C(book,</s>)

C(book) = 2
3

P(John, read, a, book) = P(John| < s >)P(read|John)P(a|read) · · ·
P(book|a)P(< /s > |book) = 0.148

P(Mulan, read, a, book) = P(Mulan| < s >) · · · = 0

32 / 56

N-gram estimation example

Corpus:
1: John read her book
2: I read a different book
3: John read a book by Mulan

P(John| < s >) = C(<s>,John)
C(<s>) = 2

3

P(read|John) = C(John,read)

C(John)
= 2

2

P(a|read) = C(read,a)
C(read)

= 2
3

P(book|a) = C(a,book)
C(a) = 1

2

P(< /s > |book) =
C(book,</s>)

C(book) = 2
3

P(John, read, a, book) = P(John| < s >)P(read|John)P(a|read) · · ·
P(book|a)P(< /s > |book) = 0.148

P(Mulan, read, a, book) = P(Mulan| < s >) · · · = 0

32 / 56

N-gram estimation example

Corpus:
1: John read her book
2: I read a different book
3: John read a book by Mulan

P(John| < s >) = C(<s>,John)
C(<s>) = 2

3

P(read|John) = C(John,read)

C(John)
= 2

2

P(a|read) = C(read,a)
C(read)

= 2
3

P(book|a) = C(a,book)
C(a) = 1

2

P(< /s > |book) =
C(book,</s>)

C(book) = 2
3

P(John, read, a, book) = P(John| < s >)P(read|John)P(a|read) · · ·
P(book|a)P(< /s > |book) = 0.148

P(Mulan, read, a, book) = P(Mulan| < s >) · · · = 0

32 / 56

N-gram Smoothing

Problem:

I Many very possible word sequences may have
been observed in zero or very low numbers in
the training data

I Leads to extremely low probabilities, effectively
disabling this word sequence, no matter how
strong the acoustic evidence is

Solution: smoothing

I produce more robust probabilities for unseen
data at the cost of modelling the training data
slightly worse

33 / 56

Simplest Smoothing technique

Instead of ML estimate

P(wi |wi−N+1, . . . ,wi−1) =
C (wi−N+1, . . . ,wi−1,wi)∑
wi
C (wi−N+1, . . . ,wi−1,wi)

Use

P(wi |wi−N+1, . . . ,wi−1) =
1 + C (wi−N+1, . . . ,wi−1,wi)∑
wi

(1 + C (wi−N+1, . . . ,wi−1,wi))

I prevents zero probabilities

I but still very low probabilities

34 / 56

N-gram simple smoothing example

Corpus:
1: John read her book
2: I read a different book
3: John read a book by Mulan

P(John| < s >) = 1+C(<s>,John)
11+C(<s>) = 3

14

P(read|John) = 1+C(John,read)

11+C(John)
= 3

13

. . .

P(Mulan| < s >) = 1+C(<s>,Mulan)
11+C(<s>) = 1

14

P(John, read, a, book) = P(John| < s >)P(read|John)P(a|read) · · ·
P(book|a)P(< /s > |book) = 0.00035(0.148)

P(Mulan, read, a, book) = P(Mulan| < s >)P(read|Mulan)P(a|read) · · ·
P(book|a)P(< /s > |book) = 0.000084(0)

35 / 56

N-gram simple smoothing example

Corpus:
1: John read her book
2: I read a different book
3: John read a book by Mulan

P(John| < s >) = 1+C(<s>,John)
11+C(<s>) = 3

14

P(read|John) = 1+C(John,read)

11+C(John)
= 3

13

. . .

P(Mulan| < s >) = 1+C(<s>,Mulan)
11+C(<s>) = 1

14

P(John, read, a, book) = P(John| < s >)P(read|John)P(a|read) · · ·
P(book|a)P(< /s > |book) = 0.00035(0.148)

P(Mulan, read, a, book) = P(Mulan| < s >)P(read|Mulan)P(a|read) · · ·
P(book|a)P(< /s > |book) = 0.000084(0)

35 / 56

N-gram simple smoothing example

Corpus:
1: John read her book
2: I read a different book
3: John read a book by Mulan

P(John| < s >) = 1+C(<s>,John)
11+C(<s>) = 3

14

P(read|John) = 1+C(John,read)

11+C(John)
= 3

13

. . .

P(Mulan| < s >) = 1+C(<s>,Mulan)
11+C(<s>) = 1

14

P(John, read, a, book) = P(John| < s >)P(read|John)P(a|read) · · ·
P(book|a)P(< /s > |book) = 0.00035(0.148)

P(Mulan, read, a, book) = P(Mulan| < s >)P(read|Mulan)P(a|read) · · ·
P(book|a)P(< /s > |book) = 0.000084(0)

35 / 56

Interpolation vs Backoff smoothing

Interpolation models:

I Linear combination with lower order n-grams

I Modifies the probabilities of both nonzero and
zero count n-grams

Backoff models:

I Use lower order n-grams when the requested
n-gram has zero or very low count in the
training data

I Nonzero count n-grams are unchanged

I Discounting: Reduce the probability of seen
n-grams and distribute among unseen ones

36 / 56

Interpolation vs Backoff smoothing

Interpolation models:

Psmooth(wi |wi−N+1, . . . ,wi−1) = λ

N︷ ︸︸ ︷
PML(wi |wi−N+1, . . . ,wi−1) +

(1− λ)

N−1︷ ︸︸ ︷
Psmooth(wi |wi−N+2, . . . ,wi−1)

Backoff models:

Psmooth(wi |wi−N+1, . . . ,wi−1) = α

N︷ ︸︸ ︷
P(wi |wi−N+1, . . . ,wi−1) if C (wi |wi−N+1, . . . ,wi−1) > 0

γ

N−1︷ ︸︸ ︷
Psmooth(wi |wi−N+2, . . . ,wi−1) if C (wi |wi−N+1, . . . ,wi−1) = 0

37 / 56

Deleted interpolation smoothing

Recursively interpolate with n-grams of lower order:
if historyn = wi−n+1, . . . ,wi−1

PI (wi |historyn) = λhistoryn
P(wi |historyn) +

(1− λhistoryn
)PI (wi |historyn−1)

I hard to estimate λhistoryn
for every history

I cluster into moderate number of weights

38 / 56

Backoff smoothing

Use P(wi |historyn−1) only if you lack data for
P(wi |historyn)

39 / 56

Good-Turing estimate

I Partition n-grams into groups depending on
their frequency in the training data

I Change the number of occurrences of an
n-gram according to

r ∗ = (r + 1)
nr+1

nr

where r is the occurrence number, nr is the
number of n-grams that occur r times

40 / 56

Katz smoothing

based on Good-Turing: combine higher and lower
order n-grams
For every N-gram:

1. if count r is large (> 5 or 8), do not change it

2. if count r is small but non-zero, discount with
≈ r ∗

3. if count r = 0, reassign discounted counts with
lower order N-gram

C ∗(wi−1,wi) = α(wi−1)P(wi)

41 / 56

Kneser-Ney smoothing: motivation

Background

I Lower order n-grams are often used as backoff model if the count
of a higher-order n-gram is too low (e.g. unigram instead of
bigram)

Problem

I Some words with relatively high unigram probability only occur in
a few bigrams. E.g. Francisco, which is mainly found in San
Francisco. However, infrequent word pairs, such as New Francisco,
will be given too high probability if the unigram probabilities of
New and Francisco are used. Maybe instead, the Francisco
unigram should have a lower value to prevent it from occurring in
other contexts.

I can’t see without my reading. . .

42 / 56

Kneser-Ney intuition

If a word has been seen in many contexts it is more
likely to be seen in new contexts as well.

I instead of backing off to lower order n-gram,
use continuation probability

Example: instead of unigram P(wi), use

PCONTINUATION(wi) =
|{wi−1 : C (wi−1wi) > 0}|∑
wi
|{wi−1 : C (wi−1wi) > 0}|

I can’t see without my reading. . . glasses

43 / 56

Kneser-Ney intuition

If a word has been seen in many contexts it is more
likely to be seen in new contexts as well.

I instead of backing off to lower order n-gram,
use continuation probability

Example: instead of unigram P(wi), use

PCONTINUATION(wi) =
|{wi−1 : C (wi−1wi) > 0}|∑
wi
|{wi−1 : C (wi−1wi) > 0}|

I can’t see without my reading. . . glasses

43 / 56

Class N-grams

1. Group words into semantic or grammatical
classes

2. build n-grams for class sequences:

P(wi |ci−N+1 . . . ci−1) = P(wi |ci)P(ci |ci−N+1 . . . ci−1)

I rapid adaptation, small training sets, small
models

I works on limited domains

I classes can be rule-based or data-driven

44 / 56

Combining PCFGs and N-grams

Only N-grams:

Meeting at three with Zhou Li
Meeting at four PM with Derek

P(Zhou|three,with) and P(Derek|PM,with))

N-grams + CFGs:

Meeting {at three: TIME} with {Zhou Li: NAME}
Meeting {at four PM: TIME} with {Derek: NAME}

P(NAME|TIME,with)

45 / 56

Adaptive Language Models

I conversational topic is not stationary

I topic stationary over some period of time

I build more specialised models that can adapt in
time

Techniques

I Cache Language Models

I Topic-Adaptive Models

I Maximum Entropy Models

46 / 56

Cache Language Models

1. build a full static n-gram model

2. during conversation accumulate low order
n-grams

3. interpolate between 1 and 2

47 / 56

Topic-Adaptive Models

1. cluster documents into topics (manually or
data-driven)

2. use information retrieval techniques with
current recognition output to select the right
cluster

3. if off-line run recognition in several passes

48 / 56

Maximum Entropy Models
Instead of linear combination:

1. reformulate information sources into constraints

2. choose maximum entropy distribution that
satisfies the constraints

Constraints general form:∑
X

P(X)fi(X) = Ei

Example: unigram

fwi
=

{
1 if w = wi

0 otherwise

49 / 56

Maximum Entropy Models
Instead of linear combination:

1. reformulate information sources into constraints

2. choose maximum entropy distribution that
satisfies the constraints

Constraints general form:∑
X

P(X)fi(X) = Ei

Example: unigram

fwi
=

{
1 if w = wi

0 otherwise

49 / 56

Outline

Introduction

Formal Language Theory

Stochastic Language Models (SLM)
N-gram Language Models
N-gram Smoothing
Class N-grams
Adaptive Language Models

Language Model Evaluation

50 / 56

Language Model Evaluation

I Evaluation in combination with Speech
Recogniser

I hard to separate contribution of the two

I Evaluation based on probabilities assigned to
text in the training and test set

51 / 56

Information, Entropy, Perplexity

Information:

I (xi) = log
1

P(xi)

Entropy:

H(X) = E [I (X)] = −
∑
i

P(xi) logP(xi)

Perplexity:
PP(X) = 2H(X)

52 / 56

Perplexity of a model

We do not know the “true” distribution
p(w1, . . . ,wn). But we have a model
m(w1, . . . ,wn). The cross-entropy is:

H(p,m) = −
∑

w1,...,wn

p(w1, . . . ,wn) logm(w1, . . . ,wn)

Cross-entropy is upper bound to entropy:

H ≤ H(p,m)

The better the model, the lower the cross-entropy
and the lower the perplexity (on the same data)

53 / 56

Test-set Perplexity

Estimate the distribution p(w1, . . . ,wn) on the
training data
Evaluate it on the test data

H = −
∑

w1,...,wn∈test set

p(w1, . . . ,wn) log p(w1, . . . ,wn)

PP = 2H

54 / 56

Perplexity and branching factor
Perplexity is roughly the geometric mean of the
branching factor

word

word1

word2
. . .

wordN

Shannon: 2.39 for English letters and 130 for
English words
Digit strings: 10
n-gram English: 50–1000
Wall Street Journal test set: 180 (bigram) 91
(trigram)

55 / 56

Performance of N-grams

Models Perplexity Word Error Rate
Unigram Katz 1196.45 14.85%
Unigram Kneser-Ney 1199.59 14.86%
Bigram Katz 176.31 11.38%
Bigram Kneser-Ney 176.11 11.34%
Trigram Katz 95.19 9.69%
Trigram Kneser-Ney 91.47 9.60%

Wall Street Journal database Dictionary: 60 000
words
Training set: 260 000 000 words

56 / 56

	Introduction
	Formal Language Theory
	Stochastic Language Models (SLM)
	N-gram Language Models
	N-gram Smoothing
	Class N-grams
	Adaptive Language Models

	Language Model Evaluation

