DT2118 Speech and Speaker Recognition Speaker Recognition

Giampiero Salvi

 ${\rm KTH}/{\rm CSC}/{\rm TMH}~{\rm giampi@kth.se}$

VT 2015

Outline

Introduction

Challenges and Methods Within and Across Speaker Variability Text Dependence Modelling Techniques Evaluation

Multi-Speaker Recordings

Forensic Speaker Recognition

Outline

Introduction

Challenges and Methods Within and Across Speaker Variability Text Dependence Modelling Techniques Evaluation

Multi-Speaker Recordings

Forensic Speaker Recognition

Person Identification

Methods rely on:

- something you posses: key, magnetic card, ...
- something you know:
 PIN-code, password, ...
- something you are: physical attributes, behaviour (biometrics)

Biometric identification features

physical attributes activity/behaviour height and weight finger print handwriting hand shape typing patterns retina gestures face facial expressions speech vocal tract size speech rate nasal cavities intonation vocabulary, grammar glottal folds

Recognition, Verification, Identification

Recognition: general term Speaker verification:

- an identity is claimed and is verified by voice
- binary decision (accept/reject)
- performance independent of number of users

Speaker identification:

- choose one of N speakers
- close set: voice belongs to one of the N speakers
- open set: any person can access the system
- ▶ problem difficulty increases with N

Speaker Recognition: Advantages

- speech is natural
- simple to record (cheap equipment)
- speech may already be used in the application

Speaker Recognition: Limitations

- not 100% security (but that's true for other techniques)
- large variability in speech
- behaviour, different microphones, physical and mental condition

Outline

Introduction

Challenges and Methods Within and Across Speaker Variability Text Dependence Modelling Techniques Evaluation

Multi-Speaker Recordings

Forensic Speaker Recognition

The Speaker Space

Voice Variability in Time

S. Furui. "Research of individuality features in speech waves and automatic speaker recognition techniques". In: Speech Communication 5.2 (1986)

Influence of the Channel

- different microphones (e.g.: telephones)
- transmission: line, equipment, coding, noise
- little control over the speaker and environment if remotely connected

Challenge: separate speaker characteristics from environment (both are long-time properties of the signal)

Representations

Speech Recognition:

- represent speech content
- disregard speaker identity
- Speaker Recognition:
 - represent speaker identity
 - disregard speech content

Representations

Speech Recognition:

- represent speech content
- disregard speaker identity
- Speaker Recognition:
 - represent speaker identity
 - disregard speech content

Surprisingly:

- MFCCs used for both
- suggests that feature extraction could be improved

text independent

Text Dependence

Either fix the content or recognise it. Examples:

- Fixed password (text dependent)
- User-specific password
- System prompts the text (prevents impostors from recording and playing back the password)
- any word is allowed (text independent)

Modelling Techniques

HMMs

Text dependent systems

state sequence represents allowed utterance
 GMMs (Gaussian Mixture Models)

- Text independent systems
- large number of Gaussian components
- sequential information not used
- SVM (Support Vector Machines)

Combined models

Speaker Verification

Registration (training, enrolment) Trained speaker model Training utterances Spectral Train from a new client analysis model Verification Spectral Accept / Reject Matching Access utterance analysis Problem: The matching score between the client model and the Claimed identity utterance is sensitive to distortion, utterance duration, etc.

Probabilistic Approach

Bayes decision theory (C: client, \overline{C} : not client)

 $\frac{\text{client sounds like this}}{\text{anybody sounds like this}} = \frac{P(C|O)}{P(\bar{C}|O)} =$

$$=\frac{P(O|\theta_{C})P(C)}{P(O|\theta_{\bar{C}})P(\bar{C})}>R$$

Optimal Threshold:

$$R = \frac{\text{Cost of False Accept}}{\text{Cost of False Reject}}$$

Standard System

Client model estimation in text-independent system

Not realistic to train the GMM for each client

 risk of unreliable estimation
 Instead adaptation of background model (multi-speaker)

- non-observed components in adaptation are unchanged
- they do not contribute in the matching probability ratio
- only well trained components contribute

Evaluation

Claimed	Decision:	
Identity	Accept	Reject
True	ОК	False Reject (FR)
False	False Accept (FA)	ОК

Score Distribution and Error Balance

Performance Measures

- False Rejection Rate (FR)
- ► False Acceptance Rate (FA)
- Half Total Error Rate (HTER = (FR+FA)/2)
- Equal Error Rate (EER)
- Detection Error Trade-off (DET) Curve

Application-Dependent Operating Point

Performance in Different Applications

In-House Example

Created by Håkan Melin

PER vs Commercial System

The Animal Park

Categorisation of speakers by the system performance

- Sheep: "harmless" users with low error rate
- Goats: "non-reliable", high variability, high error rate
- Lambs: vulnerable, easy to impersonate Wolves: potentially successful impostors

Impostors

- Performance usually measured on random speakers as impostors
- how different are real impostors?
- might have knowledge of client's voice
- technical impostors

Technical impostors

Varying technical sophistication

- Playback of recorded speech
- Concatenative synthesis
- Voice transformation
- Trainable speaker dependent speech synthesis

Preventive techniques

- Detect artificial features (typical features of speech synthesis)
- Detect if repetitions of the same text are identical

Competition development race between imposture and prevention techniques

Outline

Introduction

Challenges and Methods

Within and Across Speaker Variability Text Dependence Modelling Techniques Evaluation

Multi-Speaker Recordings

Forensic Speaker Recognition

Multi-Speaker Recordings

n-speaker detection: is a speaker present in a conversation

speaker tracking: same as above plus time positioning

speaker segmentation: determine the number of speakers and when they speak

Outline

Introduction

Challenges and Methods

Within and Across Speaker Variability Text Dependence Modelling Techniques Evaluation

Multi-Speaker Recordings

Forensic Speaker Recognition

Forensic Speaker Recognition

Determine if a suspect of a crime has spoken the recorded utterance

Difficulties

- Unknown and uncontrollable recording conditions
- High degree of variability
- Incooperative speakers: The speaker does not want to be identified as the target speaker, the opposite to speaker verification
- May try to disguise his/her voice

Risk of Incorrect Use

Example:

- \blacktriangleright False Acceptance Rate = 1%
- possible prosecutor conclusion: 99% probability the suspect is guilty
- possible defense conclusion: if in the city there are 100.000 inhabitants, 1000 would match.
 0.1% probability the suspect is guilty
 Neither is right. Use Bayesian decision theory (similar to differential diagnosis)