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Combining Acoustic and Language Models

P(sounds|words) P(words)
P(sounds)

P(words|sounds) =

» P(sounds|words) Acoustic Models
» P(words): Language Models
» P(sounds): constant



Search Objective

» Objective: find word sequence with maximum
posterior probability

A

W = argmvaxP(W\X)
P(W)P(X|W)
P(X)
= argmvaxP(W)P(X|W)

= arg max
gW

For short

words = W
sounds = X
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Combining Acoustic and Language Models

» The acoustic models are observed at a higher
rate than the language models

» The acoustic observations are correlated

» Gives the acoustic model higher weight than
the language model



Solution: Language Model Weight

Instead of
P(W)P(X|W)

Use
P(W)WP(X|W)

Where LW is the language model weight



Language Model Weight: Side Effect

penalty for many words in the utterance:
» Every new word lowers P(W) (LW> 0)
» encourage few (long) words
» discourage many (short) words
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Solution: Insertion Penalty

Work around: instead of
P(WYWP(X|W)

use
P(W)WIPNP(X| W)

Where IP is an Insertion Penalty. In log domain:

LW log[P(W)] 4+ N log[IP] 4 log[P(X|W)]
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Solution: Insertion Penalty

Work around: instead of
P(WYWP(X|W)

use
P(W)WIPNP(X| W)

Where IP is an Insertion Penalty. In log domain:
LW log[P(W)] 4+ N log[IP] 4 log[P(X|W)]

LW and IP need to be optimised for the application
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Search in Isolated Word Recognition

Boundaries known

Calculate P(X|W) using forward algorithm or
Viterbi

Choose W with highest probability

When sub-word models (monophones,
triphones, ...) are used HMMs may be easily
concatenated

v

v

v

v
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Search in Continuous Speech Recognition

» Added complexity from isolated word rec
» unknown word boundaries

» each word can theoretically start at any time
frame

» the search space becomes huge for large
vocabularies
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Simple Continuous Speech Recognition
Task
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HMM trellis for 2 word cont. rec.
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Language Model Kinds

» FSM, Finite State Machine

» word network expanded into phoneme network
(HMMs)

» CFG, Context-Free Grammar

» set of production rules expanding non-terminals
into sequence of terminals (words) and
non-terminals (e.g. dates, names)

» N-gram models
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Finite-State Machine (FSM)

» Word network expanded into phoneme network
(HMMs)

» Search using time-synchronous Viterbi
» Sufficient for simple tasks (small vocabularies)

» Similar to CFG when using sub-grammars and
word classes
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Finite-State Machine (FSM)

Iwi
/ah/
/wl + [ah/ + /t/
\I’hat is Seattle's

n

888, o888,

/silence/

o-8-8-8-0

/silence/
(optional)

weather

Boston's \// population >
Show Denver's /\/\ lattitude
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FSMs vs Markov Models
Al A3

O
FSM @%@



FSMs vs Markov Models
Al A3

FSM O A2 O




FSMs vs Markov Models

FSM
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Context-Free Grammar (CFG)

» Set of production rules expanding non-terminals
into sequence of terminals (words) and
non-terminals (e.g. <date> and <name>)

» Chart parsing not suitable for speech

recognition which requires left-to-right
processing

» Formulated with Recursive Transition Network
(RTN)
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Recursive Transition Network

» There are three types of arcs in an RTN:
CAT(x), PUSH (x) and POP(x).

» The CAT(x) arc indicates that x is a terminal
node (which is equivalent to a word arc).



Search with CFG (Recursive Transition
Network)

PUSH(NP) PUSH(VP)
OO OS:
S:
S — NP VP CAT (sam) CAT (davis)
NP % sam | sam davis . /_\A@/_\A /Wl\
VP — VERB tom ‘
VERB — likes | hates CAT (Sam) CAT
CAT (likes) CAT (tom) pop
X o
VP:
CAT (hates)
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CFGs and FSGs? vs N-grams

» finite state or context-free grammars: the
number of states increases enormously when it
is applied to more complex grammars.

» questionable if FSG or CFG are adequate to
describe natural languages

» Use n-grams instead
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Finite State Transducers (FST)

» An FST is a finite state machine with an input
and an output. The input is translated
(transduced) into one or more outputs with
probabilities assigned

» FSTs at different representation layers (e.g.
syntax, lexicon, phoneme) are combined into a
single FST

» The combined FST can be minimized efficiently
» Simplifies the search algorithm, which lowers the
recognition time

» Popular for large vocabulary recognition
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Finite State Transducers (FST)

il:0l 13:03

O
FSM OC  i2:02 O

14:04
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Recognition Cascade (simplified)

| : input feature vectors

H : HMM

C : context-dependency model
L : lexicon

G : grammars

Search Transducer:

JloHoColoG
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Search Space with Unigrams
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Search Space with Bigrams

P(W, W)

N states
N? word transitions

P(W W)

P(W) = P(w| < s >) ][ P(wilwi-1)
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Backoff Paths

For an unseen bigram P(w;|w;) = a(w;)P(w;)
where a(w;) is teh backoff weight for word w;

backoff node
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Search Space with Trigrams

@ O
P(W, |W,, W) P(W,|W,, W)

N? states WL W, W
N3 word transitions
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How to handle silence between words

Insert optional silence between words
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Viterbi Approximation

When HMMs are used for acoustic models, the
acoustic model score (likelihood) used in search is
by definition a summation of the scores of all
possible state sequences (forward probability).

» Computationally very costly

The Viterbi Approximation:
» instead of most likely word sequence
» find most likely state sequence
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Qutline

State-Based Search Algorithms
Blind Graph Search
Heuristic Graph Search
Beam Search
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State-based search paradigm
Triplet S, O, G (or quadruple S, O, G, N)

S : set of initial states

O : set of operators applied on a state to
generate a transition to another state
with corresponding cost

G : set of goal states

N : set of intermediate states. Can be
preset or generated by O.
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General Graph Searching Procedures

Dynamic Programming is powerful but cannot
handle all search problems, e.g. NP-hard problems
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NP-hard problems

» Definition: The complexity class of decision
problems that are intrinsically harder than those
that can be solved by a Non-deterministic
Turing machine in Polynomial time.

» E.g. exponential time
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NP-Hard Problem Examples

The 8 Queen problem
» Place 8 queens on a chessboard so no-one can
capture any of the other
The traveling salesman problem
» Leave home, Visit all cities once, Return home
» Find shortest distance
Use heuristics to avoid combinatorial explosion
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The 8 queen problem

1 of 12 solutions

= N W s~ 1O N




Simplified Salesman Problem

» Will illustrate different search algorithms
» Find shortest path from S to G
» Not required to visit all cities
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Expand paths

v

We can expand the graph to an explicit tree
with all paths specified
The successor (move) operator

» generates all successors of a node and computes all
costs associated with an arc

Branching factor

» average number of successors for each node
Inhibit cyclic paths

» No path progress

v

v

v
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Fully expanded search tree (graph)
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Explicit search impractical for large
problems

» Use Graph Search Algorithm
» Dynamic Programming principle
» Only keep the shortest path to a node
» Forward direction (reasoning) normal
» Backward reasoning may be more effective if
» more initial states than goal states
» backward branching factor smaller than the forward
one
» Bi-directional search
» start from both ends simultaneously
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A good case for bi-directional search
The increase of the number of hypotheses in one
search direction can be limited by the hypotheses of
the opposite direction

start end
o o
o 0
o o
o o
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A bad case for bi-directional search

start end
o) o)
o) o)

Backward search
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Blind Graph Search Algorithms

» Find an acceptable path — need not be the
best one

» Blindly expand nodes without using domain
knowledge
» Also called Uniform search or Exhaustive search

» Depth-First and Breadth-First

» Can find optimal solution after all solutions
have been found

» Brute-force search or British Museum Search
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Depth-first search

Deepest nodes are expanded first

v

v

Nodes of equal depth are expanded arbitrarily
Backtracking

» |f a dead-end is reached go back to last node and
proceed with another one

v

If Goal reached, exit
Dangerous if infinite dead-end!
» Introduce bound on depth

v

v
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Depth-first search
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Breadth-first search

» Same level nodes are expanded before going to
the next level

» Stop when goal is reached
» Guaranteed to find a solution if one exists
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Breadth-first search
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euristic Graph Search Motivation
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euristic Graph Search Motivation
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Heuristic Graph Search Motivation
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Heuristic Graph Search Motivation

Destination: Chrysler Building (no map)
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Heuristic graph search
Goal: avoid searching in hopeless directions
» Use domain-specific (heuristic) knowledge to
guide the search
g(N) The distance of the partial path from
root S to node N
h(N) Heuristic estimate of remaining distance
from node N to G
f(N) = g(N)+h(N) Estimate of the total distance
fromSto N

g(N) O
o " e



Best-first (A* search)

» A search is said to be admissible if it can
guarantee to find an optimal solution if one
exists

» If h(N) is an underestimate of the remaining
distance to G, the best-first search is
admissible. This is called A* search.
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City travel problem

Use straight-line distance to goal as heuristic
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City travel problem with heuristics
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Different variants

» If h(N) =0, VYN, then uninformed
(uniform-cost) search

» If h(N) =0 and g(N) is the depth, then
breadth-first search

» hy is a more informed heuristic than hy iff:
1. hy(N) > hy(N), YN
2. hy is still admissible
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Example Heuristics: 8-Puzzle

(@)]
1

I
o1
(@)

» hy: how many misplaced numbers

» hy: sum of row and column distances from
solution
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Best-first (A* search)

» Can also be used to find the n-best solutions

» Not suited for real-time incremental speech
recognition

» Incremental recognition: the initial part of the

sentence is recognised before the utterance is

complete
» The estimate of h(/N) requires information on the

remainder of the utterance
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Beam Search

» Breadth-first type of search but only expand
paths likely to succeed at each level

» Only these nodes are kept in the beam and the
rest are ignored, pruned

» In general a fixed number of paths, w, are kept
at each level (beam width)
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Beam Search (width=2
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Beam Search

» Unlike A* search, beam search is an
approximate heuristic search method that is
not admissible.

» ...but, it is very simple

» most popular for complicated speech
recognition problems.

» HVite in HTK implements it
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Outline

Search Space in ASR

State-Based Search Algorithms

Search Algorithms in ASR
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Time-Synchronous Viterbi Search

» breadth first + dynamic programming

» For time t each state is updated by the best
score of time t-1

» The best-scoring state sequence can be found
by back-tracking

» We want word sequence: only save
back-pointer at language nodes

» we need only 2 successive time slices for the
Viterbi computations

» Dynamic construction of the search space
during the search
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Viterbi Beam Search

» The search space for Viterbi search is O(NT)
and the complexity O(N2T) where

» N is the total number of HMM states
» T is the length of the utterance

» For large vocabulary tasks these numbers are
astronomically large even with the help of
dynamic programming

» Prune search space by beam search

» Calculate lowest cost Di,, at time t

» Discard all states with cost larger than
Dpin + T before moving on to the next time
sample t + 1
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Viterbi Beam Search

» Empirically, a beam size of between 5% and
10% of the total search space is enough for
large-vocabulary speech recognition.

» This means that 90% to 95% can be pruned
off at each time t.

» The most powerful search strategy for large
vocabulary speech recognition
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Stack Decoding A* Search

v

Variety of the A* algorithm based on the
forward algorithm

» Gives the probability of each word or subword not
just an approximation as Viterbi search

Consistent with the forward-backward training
algorithm

v

Can search for the optimal word string rather
than the optimal state sequence

v

Can, in principle, accommodate long-range
language models

v
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Admissible Heuristics for Remaining Path

f(t) =g(t)+h(T —t)

» Calculate the expected cost per frame W from
the training set by using forced alignment

f(t)=g(t)+ (T —t)¥
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