
DT2118
Speech and Speaker Recognition

Basic Search Algorithms

Giampiero Salvi

KTH/CSC/TMH giampi@kth.se

VT 2015

1 / 66

http://www.kth.se
http://www.csc.kth.se
http://www.speech.kth.se
mailto:giampi@kth.se


Components of ASR System

Speech Signal
Spectral
Analysis

Feature
Extraction

Search
and Match

Recognised Words

Acoustic Models

Lexical Models

Language Models

Representation

Constraints - Knowledge
Decoder

Search
and Match

2 / 66



Outline

Search Space in ASR
Combining Acoustic and Language Models
Search Space with N-grams

State-Based Search Algorithms
Blind Graph Search
Heuristic Graph Search
Beam Search

Search Algorithms in ASR

3 / 66



Outline

Search Space in ASR
Combining Acoustic and Language Models
Search Space with N-grams

State-Based Search Algorithms
Blind Graph Search
Heuristic Graph Search
Beam Search

Search Algorithms in ASR

4 / 66



Combining Acoustic and Language Models

P(words|sounds) =
P(sounds|words)P(words)

P(sounds)

I P(sounds|words) Acoustic Models

I P(words): Language Models

I P(sounds): constant

5 / 66



Search Objective
I Objective: find word sequence with maximum

posterior probability

Ŵ = arg max
W

P(W |X )

= arg max
W

P(W )P(X |W )

P(X )

= arg max
W

P(W )P(X |W )

For short

words = W

sounds = X

6 / 66



Combining Acoustic and Language Models

I The acoustic models are observed at a higher
rate than the language models

I The acoustic observations are correlated

I Gives the acoustic model higher weight than
the language model

7 / 66



Solution: Language Model Weight

Instead of
P(W )P(X |W )

Use
P(W )LWP(X |W )

Where LW is the language model weight

8 / 66



Language Model Weight: Side Effect

penalty for many words in the utterance:

I Every new word lowers P(W ) (LW> 0)

I encourage few (long) words

I discourage many (short) words

9 / 66



Solution: Insertion Penalty

Work around: instead of

P(W )LWP(X |W )

use
P(W )LWIPNP(X |W )

Where IP is an Insertion Penalty. In log domain:

LW log[P(W )] + N log[IP] + log[P(X |W )]

LW and IP need to be optimised for the application

10 / 66



Solution: Insertion Penalty

Work around: instead of

P(W )LWP(X |W )

use
P(W )LWIPNP(X |W )

Where IP is an Insertion Penalty. In log domain:

LW log[P(W )] + N log[IP] + log[P(X |W )]

LW and IP need to be optimised for the application

10 / 66



Search in Isolated Word Recognition

I Boundaries known

I Calculate P(X |W ) using forward algorithm or
Viterbi

I Choose W with highest probability

I When sub-word models (monophones,
triphones, . . . ) are used HMMs may be easily
concatenated

11 / 66



Search in Continuous Speech Recognition

I Added complexity from isolated word rec

I unknown word boundaries

I each word can theoretically start at any time
frame

I the search space becomes huge for large
vocabularies

12 / 66



Simple Continuous Speech Recognition
Task

HMM of
W1

HMM of
W2

CS

13 / 66



HMM trellis for 2 word cont. rec.

W2

W1

0 1 2 3 t

Time

14 / 66



Language Model Kinds

I FSM, Finite State Machine
I word network expanded into phoneme network

(HMMs)

I CFG, Context-Free Grammar
I set of production rules expanding non-terminals

into sequence of terminals (words) and
non-terminals (e.g. dates, names)

I N-gram models

15 / 66



Finite-State Machine (FSM)

I Word network expanded into phoneme network
(HMMs)

I Search using time-synchronous Viterbi

I Sufficient for simple tasks (small vocabularies)

I Similar to CFG when using sub-grammars and
word classes

16 / 66



Finite-State Machine (FSM)

/w/

/ah/

/w/ + /ah/ + /t/

/t/

What

/silence/

is Seattle's weather

Boston's

Denver's

population

lattitudeShow

/silence/
(optional)

17 / 66



FSMs vs Markov Models

FSM

A1

A2

A3

A4

MM S

A1

A2 A3

A4

18 / 66



FSMs vs Markov Models

FSM

A1

A2

A3

A4

MM S

A1

A2 A3

A4

18 / 66



FSMs vs Markov Models

FSM

A1

ε

A3

A4

MM S

A1

A3

A4

18 / 66



Context-Free Grammar (CFG)

I Set of production rules expanding non-terminals
into sequence of terminals (words) and
non-terminals (e.g. <date> and <name>)

I Chart parsing not suitable for speech
recognition which requires left-to-right
processing

I Formulated with Recursive Transition Network
(RTN)

19 / 66



Recursive Transition Network

I There are three types of arcs in an RTN:
CAT(x), PUSH (x) and POP(x).

I The CAT(x) arc indicates that x is a terminal
node (which is equivalent to a word arc).

20 / 66



Search with CFG (Recursive Transition
Network)

S → NP VP
NP → sam | sam davis
VP → VERB tom
VERB → likes | hates

PUSH(VP)PUSH(NP)
pop

CAT (tom)

CAT (hates)

VP2

S S2S1S:

NP2NP1

CAT (sam)
pop

CAT (Sam)

NP

CAT (davis)

NP:

VP1

CAT (likes) pop

VP
VP:

CAT

21 / 66



CFGs and FSGs? vs N-grams

I finite state or context-free grammars: the
number of states increases enormously when it
is applied to more complex grammars.

I questionable if FSG or CFG are adequate to
describe natural languages

I Use n-grams instead

22 / 66



Finite State Transducers (FST)

I An FST is a finite state machine with an input
and an output. The input is translated
(transduced) into one or more outputs with
probabilities assigned

I FSTs at different representation layers (e.g.
syntax, lexicon, phoneme) are combined into a
single FST

I The combined FST can be minimized efficiently
I Simplifies the search algorithm, which lowers the

recognition time

I Popular for large vocabulary recognition

23 / 66



Finite State Transducers (FST)

FSM

i1:o1

i2:o2

i3:o3

i4:o4

24 / 66



Recognition Cascade (simplified)

I : input feature vectors

H : HMM

C : context-dependency model

L : lexicon

G : grammars

Search Transducer:

I ◦ H ◦ C ◦ L ◦ G

25 / 66



Search Space with Unigrams

W1

W2

WN

P(W1)

P(W2)

P(WN)

P(W ) =
n∏

i=1

P(wi)

26 / 66



Search Space with Bigrams

N states
N2 word transitions

W1

W2

WN

P(WN | W1)

P(WN | W2)

P(WN | WN)

P(W2 | WN)

P(W1 | WN)
P(W2 | W1)

P(W2 | W2)

P(W1 | W1)

P(W1 | W2)

P(W ) = P(w1| < s >)
n∏

i=2

P(wi |wi−1)

27 / 66



Backoff Paths

For an unseen bigram P(wj |wi) = α(wi)P(wj)
where α(wi) is teh backoff weight for word wi

Wk

Wi

Wj

P(Wj | Wi)

α(Wi)

α(Wk)

backoff node

P(Wj)

28 / 66



Search Space with Trigrams

N2 states
N3 word transitions

W1

W2

P(W1 | W1 , W1)

W1

W2

P(W1 | W2 , W1)
P(W2 | W1 , W1)

P(W2 | W2 , W1)

P(W1 | W1 , W2)

P(W1 | W2 , W2)
P(W2 | W1 , W2)

P(W1 | W2 , W2)

29 / 66



How to handle silence between words

Insert optional silence between words

Wi Wj

/sil/

Wi Wj

/t/ /uw/

/sil/

30 / 66



Viterbi Approximation

When HMMs are used for acoustic models, the
acoustic model score (likelihood) used in search is
by definition a summation of the scores of all
possible state sequences (forward probability).

I Computationally very costly

The Viterbi Approximation:

I instead of most likely word sequence

I find most likely state sequence

31 / 66



Outline

Search Space in ASR
Combining Acoustic and Language Models
Search Space with N-grams

State-Based Search Algorithms
Blind Graph Search
Heuristic Graph Search
Beam Search

Search Algorithms in ASR

32 / 66



State-based search paradigm
Triplet S, O, G (or quadruple S, O, G, N)

S : set of initial states
O : set of operators applied on a state to

generate a transition to another state
with corresponding cost

G : set of goal states
N : set of intermediate states. Can be

preset or generated by O.

S G· · ·

O=3km

O=1km

33 / 66



General Graph Searching Procedures

Dynamic Programming is powerful but cannot
handle all search problems, e.g. NP-hard problems

34 / 66



NP-hard problems

I Definition: The complexity class of decision
problems that are intrinsically harder than those
that can be solved by a Non-deterministic
Turing machine in Polynomial time.

I E.g. exponential time

35 / 66



NP-Hard Problem Examples

The 8 Queen problem

I Place 8 queens on a chessboard so no-one can
capture any of the other

The traveling salesman problem

I Leave home, Visit all cities once, Return home

I Find shortest distance

Use heuristics to avoid combinatorial explosion

36 / 66



The 8 queen problem

1 of 12 solutions

8 0Z0Z0l0Z
7 Z0ZqZ0Z0
6 0Z0Z0ZqZ
5 l0Z0Z0Z0
4 0Z0Z0Z0l
3 ZqZ0Z0Z0
2 0Z0ZqZ0Z
1 Z0l0Z0Z0

a b c d e f g h

37 / 66



Simplified Salesman Problem
I Will illustrate different search algorithms
I Find shortest path from S to G
I Not required to visit all cities

S

A

B

C

D

E

F

G

3

3 3

3

2

4

4 5

5

38 / 66



Expand paths

I We can expand the graph to an explicit tree
with all paths specified

I The successor (move) operator
I generates all successors of a node and computes all

costs associated with an arc

I Branching factor
I average number of successors for each node

I Inhibit cyclic paths
I No path progress

39 / 66



Fully expanded search tree (graph)

S

A B

B C A D

D E C E F

E F D G E G C

C G F B D G A

F
40 / 66



Explicit search impractical for large
problems

I Use Graph Search Algorithm
I Dynamic Programming principle
I Only keep the shortest path to a node

I Forward direction (reasoning) normal
I Backward reasoning may be more effective if

I more initial states than goal states
I backward branching factor smaller than the forward

one

I Bi-directional search
I start from both ends simultaneously

41 / 66



A good case for bi-directional search
The increase of the number of hypotheses in one
search direction can be limited by the hypotheses of
the opposite direction

o
start

o

o

o

o

o
end

o

o

o

o

42 / 66



A bad case for bi-directional search

o
start

o

o

o

o

o
end

o

o

o

o

Forward search

Backward search

43 / 66



Blind Graph Search Algorithms

I Find an acceptable path — need not be the
best one

I Blindly expand nodes without using domain
knowledge

I Also called Uniform search or Exhaustive search

I Depth-First and Breadth-First
I Can find optimal solution after all solutions

have been found
I Brute-force search or British Museum Search

44 / 66



Depth-first search

I Deepest nodes are expanded first

I Nodes of equal depth are expanded arbitrarily
I Backtracking

I If a dead-end is reached go back to last node and
proceed with another one

I If Goal reached, exit
I Dangerous if infinite dead-end!

I Introduce bound on depth

45 / 66



Depth-first search

S

A B

B C A D

D E C E F

E F D G E G C

C G F B D G A

F
46 / 66



Breadth-first search

I Same level nodes are expanded before going to
the next level

I Stop when goal is reached

I Guaranteed to find a solution if one exists

47 / 66



Breadth-first search

S

A B

B C A D

D E C E F

E F D G E G C

C G F B D G A

F
48 / 66



Heuristic Graph Search Motivation

destination
(Chrysler Building)

49 / 66



Heuristic Graph Search Motivation

destination
(Chrysler Building)

49 / 66



Heuristic Graph Search Motivation

destination
(Chrysler Building)

destination
(Chrysler Building)

49 / 66



Heuristic Graph Search Motivation

Destination: Chrysler Building (no map)

50 / 66



Heuristic graph search
Goal: avoid searching in hopeless directions

I Use domain-specific (heuristic) knowledge to
guide the search

g(N) The distance of the partial path from
root S to node N

h(N) Heuristic estimate of remaining distance
from node N to G

f(N) = g(N)+h(N) Estimate of the total distance
from S to N

S
N

G

g(N) h(N)

51 / 66



Best-first (A* search)

I A search is said to be admissible if it can
guarantee to find an optimal solution if one
exists

I If h(N) is an underestimate of the remaining
distance to G, the best-first search is
admissible. This is called A* search.

52 / 66



City travel problem

Use straight-line distance to goal as heuristic

S

A

B

C

D

E

F

G

3

3 3

3

2

4

4 5

5
10

8.5 5.7 2.8

10.3
7

3

53 / 66



City travel problem with heuristics

S

A B

B C A D

D E C E F

E F D G E G C

C G F B D G A

F

11.5

11.7

11.8

12

12.3

17.3

21

54 / 66



Different variants

I If h(N) = 0, ∀N , then uninformed
(uniform-cost) search

I If h(N) = 0 and g(N) is the depth, then
breadth-first search

I h2 is a more informed heuristic than h1 iff:
1. h2(N) ≥ h1(N), ∀N
2. h2 is still admissible

55 / 66



Example Heuristics: 8-Puzzle

8 2 1
6 4
5 3 7

→
1 2 3
4 5 6
7 8

I h1: how many misplaced numbers

I h2: sum of row and column distances from
solution

56 / 66



Best-first (A* search)

I Can also be used to find the n-best solutions
I Not suited for real-time incremental speech

recognition
I Incremental recognition: the initial part of the

sentence is recognised before the utterance is
complete

I The estimate of h(N) requires information on the
remainder of the utterance

57 / 66



Beam Search

I Breadth-first type of search but only expand
paths likely to succeed at each level

I Only these nodes are kept in the beam and the
rest are ignored, pruned

I In general a fixed number of paths, w , are kept
at each level (beam width)

58 / 66



Beam Search (width=2)

S

A B

B C A D

D E C E F

E F D G E G C

C G F B D G A

F

3

7 6 6 6

9 9

12

59 / 66



Beam Search

I Unlike A* search, beam search is an
approximate heuristic search method that is
not admissible.

I . . . but, it is very simple

I most popular for complicated speech
recognition problems.

I HVite in HTK implements it

60 / 66



Outline

Search Space in ASR
Combining Acoustic and Language Models
Search Space with N-grams

State-Based Search Algorithms
Blind Graph Search
Heuristic Graph Search
Beam Search

Search Algorithms in ASR

61 / 66



Time-Synchronous Viterbi Search

I breadth first + dynamic programming

I For time t each state is updated by the best
score of time t-1

I The best-scoring state sequence can be found
by back-tracking

I We want word sequence: only save
back-pointer at language nodes

I we need only 2 successive time slices for the
Viterbi computations

I Dynamic construction of the search space
during the search

62 / 66



Viterbi Beam Search
I The search space for Viterbi search is O(NT )

and the complexity O(N2T ) where
I N is the total number of HMM states
I T is the length of the utterance

I For large vocabulary tasks these numbers are
astronomically large even with the help of
dynamic programming

I Prune search space by beam search

I Calculate lowest cost Dmin at time t

I Discard all states with cost larger than
Dmin + T before moving on to the next time
sample t + 1

63 / 66



Viterbi Beam Search

I Empirically, a beam size of between 5% and
10% of the total search space is enough for
large-vocabulary speech recognition.

I This means that 90% to 95% can be pruned
off at each time t.

I The most powerful search strategy for large
vocabulary speech recognition

64 / 66



Stack Decoding A∗ Search

I Variety of the A∗ algorithm based on the
forward algorithm

I Gives the probability of each word or subword not
just an approximation as Viterbi search

I Consistent with the forward-backward training
algorithm

I Can search for the optimal word string rather
than the optimal state sequence

I Can, in principle, accommodate long-range
language models

65 / 66



Admissible Heuristics for Remaining Path

f (t) = g(t) + h(T − t)

I Calculate the expected cost per frame Ψ from
the training set by using forced alignment

f (t) = g(t) + (T − t)Ψ

66 / 66


	Search Space in ASR
	Combining Acoustic and Language Models
	Search Space with N-grams

	State-Based Search Algorithms
	Blind Graph Search
	Heuristic Graph Search
	Beam Search

	Search Algorithms in ASR

