KTH, Matematik, Maurice Duits

SF2795 Fourier Analysis Homework Assignment for Lecture 13

- 1. (3.1.4) Show that $\hat{f}(\gamma)$ is analytic in the whole complex plane if $f \in \mathbb{L}^2(\mathbb{R})$ has compact support, whereas it is analytic in the open strip $|2\pi \operatorname{Im} \gamma| < B$ is $|f(x)| \leq cst * e^{-B|x|}$.
- 2. (3.1.13) EXTENDED
 - (a) Check that if α belongs to the open upper half plan, then

$$\frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{e^{2\pi i x \gamma}}{x - \alpha} dx = \begin{cases} e^{2\pi \alpha \gamma}, & \gamma > 0\\ 0, & \gamma < 0 \end{cases}$$

- (b) Use this to check that if $f(x) = \frac{1}{\pi} \frac{1}{1+x^2}$ then $\hat{f}(\gamma) = e^{-2\pi|\gamma|}$.
- 3. (3.1.17) Check that if B>0 and if $|f(x)|\leq \exp(-|x|)$ for $-\infty\leq a\leq x\leq b\leq \infty$, then the functions $x^nf:n\geq 0$ span $\mathbb{L}^2[a,b]$. Hint: Take $g\in\mathbb{L}^2[a,b]$ perpendicular fo x^nf for every $n\geq 0$. Then

$$(fg^*)^{\wedge}(\gamma) = \int_a^b fg^* e^{-2\pi i \gamma x} dx$$

is analytic in the open strip $D:2\pi|\operatorname{Im}\gamma| < B$ and vanishes together with all its derivatives at $\gamma=0.$