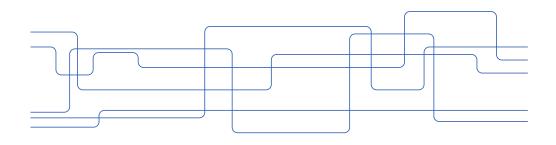


Lecture 5

Ch. 5, Norms for vectors and matrices

Emil Björnson/Magnus Jansson/Mats Bengtsson April 27, 2016



Norms for vectors and matrices — Why?

Problem: Measure size of vector or matrix. What is "small" and what is "large"?

Problem: Measure distance between vectors or matrices. When are they "close together" or "far apart"?

Answers are given by norms.

Also: Tool to analyze convergence and stability of algorithms.

Vector norm — axiomatic definition

Definition: Let V be a vector space over a field F (R or C). A function $|| \cdot || : V \rightarrow R$ is a vector norm if for all $x, y \in V$

nonnegative	(1) $ x \ge 0$
positive	(1a) $ x = 0$ iff $x = 0$
homogeneous	(2) $ cx = c x $ for all $c \in F$
triangle inequality	(3) $ x + y \le x + y $

A function not satisfying (1a) is called a vector seminorm.

Interpretation: Size/length of vector.

Inner product — axiomatic definition

Definition: Let V be a vector space over a field F (R or C). A function $\langle \cdot, \cdot \rangle : V \times V \to F$ is an inner product if for all $x, y, z \in V$,

(1) $\langle x,x angle \geq 0$	nonnegative
(1a) $\langle x,x angle=0$ iff $x=0$	positive
(2) $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$	additive
(3) $\langle cx,y angle=c\langle x,y angle$ for all $c\in {\sf F}$	homogeneous
(4) $\langle x,y angle=\overline{\langle y,x angle}$	Hermitian property

Interpretation: "Angle" (distance) between vectors.

(KTH)

Connections between norm and inner products

Corollary: If $\langle \cdot, \cdot \rangle$ is an inner product, then $||x|| = (\langle x, x \rangle)^{1/2}$ is a vector norm.

Called: Vector norm derived from an inner product. Satisfies parallelogram identity (Necessary and sufficient condition):

$$\frac{1}{2}(||x+y||^2 + ||x-y||^2) = ||x||^2 + ||y||^2$$

Theorem (Cauchy-Schwarz inequality):

$$|\langle x,y\rangle|^2 \leq \langle x,x\rangle\langle y,y\rangle$$

We have equality iff x = cy for some $c \in F$ (i.e., linearly dependent)

Examples

► The Euclidean norm (*l*₂) on C^{*n*}:

$$||x||_2 = (|x_1|^2 + |x_2|^2 + \cdots + |x_n|^2)^{1/2}.$$

The sum norm (l₁), also called one-norm or Manhattan norm:

$$||x||_1 = |x_1| + |x_2| + \cdots + |x_n|.$$

• The max norm (I_{∞}) :

$$|x||_{\infty} = \max\{|x_1|, |x_2|, \dots, |x_n|\}$$

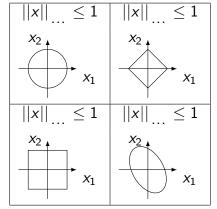
The sum and max norms cannot be derived from an inner product!

5/21

Unit balls for different norms

The shape of the unit ball characterizes the norm.

Fill in which norm corresponds to which unit ball!



Properties: Convex and compact (for finite dimensions), includes the origin.

Examples cont'd

• The l_p -norm on \mathbf{C}^n is $(p \ge 1)$:

$$||x||_{p} = (|x_{1}|^{p} + |x_{2}|^{p} + \dots + |x_{n}|^{p})^{1/p}$$

Norms may also be constructed from others, e.g.,:

 $||x|| = \max\{||x||_{p_1}, ||x||_{p_2}\}$

or let nonsingular $T \in M_n$ and $|| \cdot ||$ be a given, then

$$||x||_{\mathcal{T}} = ||\mathcal{T}x||$$

(same notation sometimes used for $||x||_W = x^* Wx$)

 Norms on infinite-dimensional vector spaces (e.g., all continuous functions on an interval [a, b]): "similarly" defined (sums become integrals)

Convergence

Assume: Vector space V over R or C. Definition: The sequence $\{x^{(k)}\}$ of vectors in V converges to $x \in V$ with respect to $|| \cdot ||$ iff

$$||x^{(k)}-x||
ightarrow 0$$
 as $k
ightarrow \infty$.

Infinite dimension:

- Sequence can converge in one norm, but not another.
- Important to state choice of norm.

Convergence: Finite dimension

Corollary: For any vector norms $|| \cdot ||_{\alpha}$ and $|| \cdot ||_{\beta}$ on a finite-dimensional V, there exists $0 \leq C_m < C_M < \infty$ such that

 $C_m||x||_{\alpha} \le ||x||_{\beta} \le C_M||x||_{\alpha} \quad \forall x \in V$

Conclusion: Convergence in one norm \Rightarrow convergence in all norms.

Note: Result also holds for **pre-norms**, without the triangle inequality.

- **Definition:** Two norms are **equivalent** if convergence in one of the norms always implies convergence in the other.
- **Conclusion:** All norms are equivalent in the finite dimensional case.

Convergence: Cauchy sequence

Definition: A sequence $\{x^{(k)}\}$ in V is a Cauchy sequence with respect to $|| \cdot ||$ if for every $\epsilon > 0$ there is a $N_{\epsilon} > 0$ such that

$$||x^{(k_1)} - x^{(k_2)}|| \le \epsilon$$

for all $k_1, k_2 \geq N_{\epsilon}$.

Theorem: A sequence $\{x^{(k)}\}$ in a finite dimensional V converges to a vector in V iff it is a Cauchy sequence.

Dual norms

Definition: The dual norm of $\|\cdot\|$ is

$$\|y\|^{D} = \max_{x:\|x\|=1} \operatorname{Re} y^{*}x = \max_{x:\|x\|=1} |y^{*}x| = \max_{x\neq 0} \frac{|y^{*}x|}{\|x\|}$$

Examples: Norm Dual norm

$$\begin{array}{ccc} \|\cdot\|_2 & \|\cdot\|_2 \\ \|\cdot\|_1 & \|\cdot\|_\infty \\ \|\cdot\|_\infty & \|\cdot\|_1 \end{array}$$

- Dual of dual norm is the original norm.
- Euclidean norm is its own dual.
- Generalized Cauchy-Schwarz: $|y^*x| \le ||x|| ||y||^D$

Vector norms applied to matrices

 M_n is a vector space (of dimension n^2) Conclusion: We can apply vector norms to matrices.

Examples: The l_1 norm: $||A||_1 = \sum_{i,j} |a_{ij}|$. The l_2 norm (Euclidean/Frobenius norm): $||A||_2 = (\sum_{i,j} |a_{ij}|^2)^{1/2}$. The l_{∞} norm: $||A||_{\infty} = \max_{i,j} |a_{ij}|$.

Observation: Matrices have certain properties (e.g., multiplication). May be useful to define particular matrix norms.

Matrix norm — axiomatic definition

Definition: $ \cdot : M_n \to \mathbf{R}$ is a matrix no $A, B \in M_n$,	orm if for all	
(1) $ A \ge 0$	nonnegative	
(1a) $ A = 0$ iff $A = 0$	positive	
(2) $ cA = c A $ for all $c \in \mathbf{C}$	homogeneous	
$(3) A + B \le A + B $	triangle inequality	
(4) $ AB \le A B $	submultiplicative	
Observations: All vector norms satisfy (1)-(3), some may satisfy (4).		

Generalized matrix norm if not satisfying (4).

Which vector norms are matrix norms?

 $||A||_1$ and $||A||_2$ are matrix norms.

 $||A||_{\infty}$ is not a matrix norm (but a generalized matrix norm).

However, $|||A||| = n||A||_{\infty}$ is a matrix norm.

Induced matrix norms

```
Definition: Let || \cdot || be a vector norm on \mathbb{C}^n. The matrix
norm
|||A||| = \max_{||x||=1} ||Ax||
is induced by || \cdot ||.
Properties of induced norms ||| \cdot |||:
```

- ► |||/||| = 1.
- The only matrix norm N(A) with $N(A) \leq |||A|||$ for all $A \in M_n$

is
$$N(\cdot) = ||| \cdot |||$$
.

Last property called minimal matrix norm.

Examples

The maximum column sum (induced by l_1):

$$|||A|||_1 = \max_j \sum_i |a_{ij}|$$

The spectral norm (induced by l_2):

$$|||A|||_2 = \max\{\sqrt{\lambda} : \lambda \in \sigma(A^*A)\}$$

The maximum row sum (induced by I_{∞}):

$$|||A|||_{\infty} = \max_{i} \sum_{j} |a_{ij}|$$

Application: Computing Spectral radius

Recall: Spectral radius: $\rho(A) = \max\{|\lambda| : \lambda \in \sigma(A)\}$. Not a matrix norm, but very related. **Theorem:** For any matrix norm $||| \cdot |||$ and $A \in M_n$, $\rho(A) \leq |||A|||$. **Lemma:** For any $A \in M_n$ and $\epsilon > 0$, there is $||| \cdot |||$ such that $\rho(A) \leq |||A||| \leq \rho(A) + \epsilon$ **Corollary:** For any matrix norm $||| \cdot |||$ and $A \in M_n$,

 $\rho(A) = \lim_{k \to \infty} |||A^k|||^{1/k}$

Application: Convergence of A^k

Lemma: If there is a matrix norm with |||A||| < 1 then $\lim_{k\to\infty} A^k = 0$.

Theorem:
$$\lim_{k\to\infty} A^k = 0$$
 iff $\rho(A) < 1$.
Matrix extension of $\lim_{k\to\infty} x^k = 0$ iff $|x| < 1$

KTH

Application: Power series

Theorem: $\sum_{k=0}^{\infty} a_k A^k$ converges if there is a matrix norm such that $\sum_{k=0}^{\infty} |a_k| |||A|||^k$ converges.

Corollary: If |||A||| < 1 for some matrix norm, then I - A is invertible and

$$(I - A)^{-1} = \sum_{k=0}^{\infty} A^k$$

Matrix extension of $(1-x)^{-1} = \sum_{k=0}^{\infty} x^k$ for |x| < 1.

Useful to compute "error" between A^{-1} and $(A + E)^{-1}$.

Unitarily invariant and condition number

Definition: A matrix norm is unitarily invariant if |||UAV||| = |||A||| for all $A \in M_n$ and all unitary matrices $U, V \in M_n$.

Examples: Frobenius norm $|| \cdot ||_2$ and spectral norm $||| \cdot |||_2$.

Definition: Condition number for matrix inversion with respect to the matrix norm $||| \cdot |||$ of nonsingular $A \in M_n$ is

 $\kappa(A) = |||A^{-1}||| |||A|||$

Frequently used in perturbation analysis in numerical linear algebra.

Observation: $\kappa(A) \ge 1$ (from submultiplicative property). **Observation:** For unitarily invariant norms: $\kappa(UAV) = \kappa(A)$.