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Norms for vectors and matrices — Why?

Problem: Measure size of vector or matrix.
What is “small” and what is “large”?

Problem: Measure distance between vectors or matrices.
When are they “close together” or “far apart”?

Answers are given by norms.

Also: Tool to analyze convergence and stability of algorithms.
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Vector norm — axiomatic definition

Definition: Let V be a vector space over a field F (R or C).
A function || · || : V → R is a vector norm if for all
x , y ∈ V

(1) ||x || ≥ 0 nonnegative
(1a) ||x || = 0 iff x = 0 positive
(2) ||cx || = |c | ||x || for all c ∈ F homogeneous
(3) ||x + y || ≤ ||x ||+ ||y || triangle inequality

A function not satisfying (1a) is called a vector
seminorm.

Interpretation: Size/length of vector.

3 / 21

Inner product — axiomatic definition

Definition: Let V be a vector space over a field F (R or C).
A function �·, ·� : V × V → F is an inner product if for all
x , y , z ∈ V ,

(1) �x , x� ≥ 0 nonnegative
(1a) �x , x� = 0 iff x = 0 positive
(2) �x + y , z� = �x , z�+ �y , z� additive
(3) �cx , y� = c�x , y� for all c ∈ F homogeneous

(4) �x , y� = �y , x� Hermitian property

Interpretation: “Angle” (distance) between vectors.
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Connections between norm and inner products

Corollary: If �·, ·� is an inner product, then ||x || = (�x , x�)1/2
is a vector norm.
Called: Vector norm derived from an inner product.
Satisfies parallelogram identity (Necessary and sufficient
condition):

1
2
(||x + y ||2 + ||x − y ||2) = ||x ||2 + ||y ||2

Theorem (Cauchy-Schwarz inequality):

|�x , y�|2 ≤ �x , x��y , y�
We have equality iff x = cy for some c ∈ F (i.e., linearly
dependent)
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Examples

� The Euclidean norm (l2) on Cn:

||x ||2 = (|x1|2 + |x2|2 + · · ·+ |xn|2)1/2.
� The sum norm (l1), also called one-norm or Manhattan

norm:
||x ||1 = |x1|+ |x2|+ · · ·+ |xn|.

� The max norm (l∞):

||x ||∞ = max{|x1|, |x2|, . . . , |xn|}
The sum and max norms cannot be derived from an inner
product!

6 / 21

Unit balls for different norms

The shape of the unit
ball characterizes the
norm.

Fill in which norm
corresponds to which
unit ball!

||x || ... ≤ 1 ||x || ... ≤ 1

x1

x2

x1

x2

||x || ... ≤ 1 ||x || ... ≤ 1

x1

x2

x1

x2

Properties: Convex and compact (for finite dimensions),
includes the origin.
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Examples cont’d

� The lp-norm on Cn is (p ≥ 1):

||x ||p = (|x1|p + |x2|p + · · ·+ |xn|p)1/p

� Norms may also be constructed from others, e.g.,:

||x || = max{||x ||p1 , ||x ||p2}
or let nonsingular T ∈ Mn and || · || be a given, then

||x ||T = ||Tx ||.
(same notation sometimes used for ||x ||W = x∗Wx)

� Norms on infinite-dimensional vector spaces
(e.g., all continuous functions on an interval [a, b]):
“similarly” defined (sums become integrals)
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Convergence

Assume: Vector space V over R or C.
Definition: The sequence {x (k)} of vectors in V converges to

x ∈ V with respect to || · || iff

||x (k) − x || → 0 as k → ∞.

Infinite dimension:
� Sequence can converge in one norm, but not another.
� Important to state choice of norm.
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Convergence: Finite dimension

Corollary: For any vector norms || · ||α and || · ||β on a
finite-dimensional V , there exists 0 ≤ Cm < CM < ∞
such that

Cm||x ||α ≤ ||x ||β ≤ CM ||x ||α ∀x ∈ V

Conclusion: Convergence in one norm ⇒ convergence in all
norms.
Note: Result also holds for pre-norms, without the
triangle inequality.

Definition: Two norms are equivalent if convergence in one
of the norms always implies convergence in the other.

Conclusion: All norms are equivalent in the finite dimensional
case.
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Convergence: Cauchy sequence

Definition: A sequence {x (k)} in V is a Cauchy sequence
with respect to || · || if for every � > 0 there is a N� > 0
such that

||x (k1) − x (k2)|| ≤ �

for all k1, k2 ≥ N�.

Theorem: A sequence {x (k)} in a finite dimensional V
converges to a vector in V iff it is a Cauchy sequence.
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Dual norms
Definition: The dual norm of �·� is

�y�D = max
x :�x�=1

Re y∗x = max
x :�x�=1

|y∗x | = max
x �=0

|y∗x |
�x�

Examples: Norm Dual norm
�·�2 �·�2
�·�1 �·�∞
�·�∞ �·�1

� Dual of dual norm is the original norm.
� Euclidean norm is its own dual.
� Generalized Cauchy-Schwarz: |y ∗x | ≤ �x��y�D
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Vector norms applied to matrices

Mn is a vector space (of dimension n2)
Conclusion: We can apply vector norms to matrices.

Examples: The l1 norm: ||A||1 =
�

i ,j |aij |.
The l2 norm (Euclidean/Frobenius norm):
||A||2 =

��
i ,j |aij |2

�1/2
.

The l∞ norm: ||A||∞ = maxi ,j |aij |.

Observation: Matrices have certain properties (e.g.,
multiplication).
May be useful to define particular matrix norms.
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Matrix norm — axiomatic definition

Definition: ||| · ||| : Mn → R is a matrix norm if for all
A,B ∈ Mn,

(1) |||A||| ≥ 0 nonnegative
(1a) |||A||| = 0 iff A = 0 positive
(2) |||cA||| = |c| |||A||| for all c ∈ C homogeneous
(3) |||A + B||| ≤ |||A|||+ |||B ||| triangle inequality
(4) |||AB ||| ≤ |||A||| |||B||| submultiplicative

Observations: � All vector norms satisfy (1)-(3), some
may satisfy (4).

� Generalized matrix norm if not satisfying (4).
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Which vector norms are matrix norms?

||A||1 and ||A||2 are matrix norms.

||A||∞ is not a matrix norm (but a generalized matrix
norm).

However, |||A||| = n||A||∞ is a matrix norm.
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Induced matrix norms

Definition: Let || · || be a vector norm on Cn. The matrix
norm

|||A||| = max
||x ||=1

||Ax ||

is induced by || · ||.

Properties of induced norms ||| · |||:
� |||I ||| = 1.
� The only matrix norm N(A) with N(A) ≤ |||A||| for

all A ∈ Mn
is N(·) = ||| · |||.

Last property called minimal matrix norm.
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Examples

The maximum column sum (induced by l1):

|||A|||1 = max
j

�

i

|aij |

The spectral norm (induced by l2):

|||A|||2 = max{
√
λ : λ ∈ σ(A∗A)}

The maximum row sum (induced by l∞):

|||A|||∞ = max
i

�

j

|aij |
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Application: Computing Spectral radius

Recall: Spectral radius: ρ(A) = max{|λ| : λ ∈ σ(A)}.
Not a matrix norm, but very related.

Theorem: For any matrix norm ||| · ||| and A ∈ Mn,

ρ(A) ≤ |||A|||.

Lemma: For any A ∈ Mn and � > 0, there is ||| · ||| such that

ρ(A) ≤ |||A||| ≤ ρ(A) + �

Corollary: For any matrix norm ||| · ||| and A ∈ Mn,

ρ(A) = lim
k→∞

|||Ak |||1/k
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Application: Convergence of Ak

Lemma: If there is a matrix norm with |||A||| < 1 then
limk→∞ Ak = 0.

Theorem: limk→∞ Ak = 0 iff ρ(A) < 1.

Matrix extension of limk→∞ xk = 0 iff |x | < 1.
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Application: Power series

Theorem:
�∞

k=0 akAk converges if there is a matrix norm
such that

�∞
k=0 |ak | |||A|||k converges.

Corollary: If |||A||| < 1 for some matrix norm, then I − A is
invertible and

(I − A)−1 =
∞�

k=0

Ak

Matrix extension of (1 − x)−1 =
�∞

k=0 xk for |x | < 1.

Useful to compute “error” between A−1 and (A + E )−1.
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Unitarily invariant and condition number

Definition: A matrix norm is unitarily invariant if
|||UAV ||| = |||A||| for all A ∈ Mn and all unitary matrices
U,V ∈ Mn.

Examples: Frobenius norm || · ||2 and spectral norm ||| · |||2.

Definition: Condition number for matrix inversion with
respect to the matrix norm ||| · ||| of nonsingular A ∈ Mn is

κ(A) = |||A−1||| |||A|||
Frequently used in perturbation analysis in numerical
linear algebra.

Observation: κ(A) ≥ 1 (from submultiplicative property).
Observation: For unitarily invariant norms: κ(UAV ) = κ(A).
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