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ASR seldom works out of the box!
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Why is it so hard?

Language
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Misleading Training/Test Set

real world
database

train test

I mismatch between speakers

I unknown words or grammatical constructs

I environmental mismatch
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How do we cope with variability?
Ideally: models that generalise
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Adaptation

I adapt the acoustic features

I adapt the models (acoustic, language)
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Adaptation and Speaker Characteristics

I anatomy, age, gender, dialect

I speaking style

I speaker adjustment to environment

I speaker adjustment to listener
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Feature Transformation

I general (PCA, LDA)

I explicit speaker modelling (VTLN)

I Speaker Specific (Statistical)
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Principal Component Analysis (PCA)

I Aka Karhunen-Loewe transform

I Most used for dimensionality reduction

I new basis: ordered by data spread

I we can discard dimensions with small variation

I uncorrelated components
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Problem with PCA

class 1

class 2
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Linear Discriminant Analysis (LDA)

I supervised
I maximise ratio between:

1. between class scatter matrix SB

2. within class scatter matrices SW

I example: J = tr(S−1W SB)
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Explicit Speaker Modelling

I focus on anatomy

I leave out all idiosyncrasies

I most salient parameter: Vocal Tract Length

I not correlated with body height

I possibly not correlated with formants [1]

[1] H. Hatano, T. Kitamura, H. Takemoto, P. Mokhtari, K. Honda, and S. Masaki. “Correlation between vocal tract
length, body height, formant frequencies, and pitch frequency for the five Japanese vowels uttered by fifteen
male speakers”. In: Proc. of Interspeech. 2012
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Vocal Tract Length Normalisation (VTLN)

origff
L fU

αmin

αmax

f
scaled
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VTLN factor

I vary factor α between αmin and αmax with
regular steps

I run recogniser N times

I choose results with highest likelihood

I with adults α ranges between 0.8 and 1.25

I children to adults it ranges between 1.0 and 1.7
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VTLN properties

Advantages:

I no adaptation data needed

I simple transformation (one parameter)

I good improvements for children

Disadvantages:

I need to run recogniser N times

I phoneme dependent transforms (more
parameters to tune)

I not powerful
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Model Adaptation

I objective: adjust model parameters to new
observations

I if plenty of data: retrain with Baum-Welch

I supervised vs unsupervised

I example: enrolment for dictation systems

I more often little data, no transcriptions

I use results from recogniser: risky
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MAP Adaptation

I Maximum a Posteriori

I model parameters are stochastic variables

I define meaningful prior

µ̂ik =
τikµnwik

+
∑T

t=1 ζt(i , k)xt

τik +
∑T

t=1 ζt(i , k)
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MAP Problems

I need good prior

I all model parameters potentially updated

I if no adaptation data for a phonetic classes
then not adaptation for that class
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Maximum Likelihood Linear Regression
(MLLR)

I constrained transformations

I reduce parameters to re-estimate

I linear regression:

µ̂ik = Acµik + bc

I estimate Ac and bc maximising likelihood

I one transform per regression class (example:
for each phoneme)
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MLLR

if not enough data:

I use broader classes to be transformed

I for example one transform for fricatives, one for
front vowels. . .
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Speaker-Adaptive Training (SAT)

Conventional training
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Effects of Adaptation

Models Relative Error
Reduction (%)

CHMM baseline
MLLR on mean only 12
MLLR on mean and variance 2
MLLR SAT 8

Dictation 60000 words
Here one regression class per phoneme was used
(group all triphones with the same middle phoneme)
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Combined MLLR and MAP
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Speaker Clustering

I MAP and MLLR require adaptation data

I not always available
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Speaker Clustering
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Speaker Clustering Variants

build models for each group

I at recognition time find best model

I can be integrated in search algorithm (pruning)

I combine with MLLR

use speaker dependent (SD) models and:

I represent each new speaker as linear
combination of SD models

I eigenvoices
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Eigenfaces

. . .

64× 73 pixels
= 4672 dimensions!

Faces from the FERET database
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Eigenfaces

. . .

Eigenfaces
mean PC1 PC2 PC3

PC4 PC5 PC6

. . .
from 4672 dimensions to

a small basis

Faces from the FERET database
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Eigenvoices

I each voice (face) represented by model
parameters

I thousand of dimensions

I subtract mean and run PCA

I during recognition find new speaker in
eigenvoice space

I very little adaptation data required
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The Acoustical Environment

I additive noise

I reverberation (room)

I channel distortion (microphone, telephone line,
codec)
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A Model of the Environment

I A model of combined noise and reverberation
effects

x [m] h[m]
⊕

y [m]

n[m]
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Additive Noise

I Stationary vs non-stationary

I White vs coloured (pink noise low frequency
emphasis)
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Additive Noise: Sources

Environment:

I air conditioner

I PC, keyboard

I cars

I other speakers (cocktail party effect)

The speaker:

I breath and puff noise

I lip smack

I mic and wire contacts
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Additive Noise: Lombard Effect

I The speaker may change his voice when
speaking in noise

I Reported recognition experiments are mainly
performed in simulated noise

I do not capture this effect
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Reverberation

I sound reflections from walls and objects in a
room are added to the direct sound

I recognition systems are very sensitive to this
effect

I strong sounds mask succeeding weak sounds

I reverberation radius: the distance from the
sound source where the direct and the far
sound fields are equal in amplitude

Typical office:

I reverberation time up to 100 ms

I reverberation radius 0.5 m
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Acoustical Transducers

I Close-talk microphones
I background noise is attenuated
I sensitive to speaker non-speech sounds
I positioning is critical

I mouth corner recommended
I plosive bursts may saturate the mic signal if right in

front

I Far field microphones
I pick up more background noise
I positioning less critical

I Most popular type: condenser microphone
I Multimicrophones - Microphone Arrays

I Adjustable directivity
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Near and far distance microphones
Headset

2 m distance
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Environment Compensation Pre-processing

Compensate with signal processing (feature
extraction)

I Spectral Subtraction

I Cepstral Mean Normalisation (CMN)

I Real-time Cepstral Normalisation

I RASTA
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Adaptive Echo Cancellation

I also used in voice over IP

I adjust parameters of a FIR filter online

I The Least Mean Squares (LMS) Algorithm
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Multi-microphone Speech Enhancement

I Microphone Arrays (beam forming)

I Blind Source Separation
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Spectral Subtraction

Assumption 1, noise additive:

y [m] = x [m] + n[m]

Assumption 2, signal and noise decorrelated: In
frequency domain

|Y (f )|2 ≈ |X (f )|2 + |N(f )|2

I estimate |N(f )|2 in silent segments

I subtract |N(f )|2 from |Y (f )|2
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Spectral Subtraction
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Cepstral Mean Normalisation (CMN)

I Subtract the average cepstrum over the
utterance from each frame

I Compensates for different frequency
characteristics
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CMN Problem: Phonetic Information

The average cepstrum contains both channel and
phonetic information

I The compensation will be different for different
utterances, especially for short utterances
(< 2–4 sec)

I Still provides robustness against filtering
operations

I For telephone recordings, 30% relative error
reduction

I Some compensation also for differences in voice
source spectra
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Real Time CMN

Problem: Need whole utterance to computer
average

I Not suitable for live recognition

I use high-pass filter with about 5 sec time
constant

x̄t = αxt + (1− α)x̄t−1

I other filters are also popular

I need good initialisation
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RASTA: RelAtive SpecTrAl
I Hearing-inspired bandpass filtering of filterbank

amplitude envelopes
I Removes long-term bias in the signal but leaves

syllable rate modulation mainly unchanged

[2]

[2] H. Hermansky and N. Morgan. “RASTA Processing of Speech”. In: IEEE Trans. Speech Audio Process. 2.4
(Oct. 1994), pp. 578–589
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Environmental Model Adaptation

I Retraining on Corrupted Speech

I Model Adaptation

I Parallel Model Combination

I Retraining on Compensated Features
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Retraining on Corrupted Speech
I If the distortion is known, then models can be

trained by distorting the training data in this
way (noise added, filtering)

I Several distortions can be used in parallel
(multi-style training)

I Ignores the effect of the distortion on the
speaker

0

20

40

60

80

100

0 5 10 15 20 25 30

SNR (dB)

W
or

d
E

rr
or

R
at

e
(%

)

Mismatched

Matched (Noisy)

0

5

10

15

20

25

30

5 10 15 20 25 30

SNR (dB)

W
or
d
E
rr
or

R
at
e
(%

)

Matched Noise

Multistyle

56 / 71



Model Adaptation

I Same methods possible as for speaker
adaptation (MAP and MLLR)

I MAP requires large adaptation data -
impractical

I MLLR needs ca 1 min
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MLLR for Noise Adaptation

one regression class and only bias

I Combined speech recognition and MLLR
estimation of the distortion

I Slightly better than CMN, especially for short
utterances

I Slower than CMN since two-stage procedure
and model adaptation as part of recognition
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Parallel Model Combination

I Gaussian distribution
converts into
Non-Gaussian distribution

I No problem, a Gaussian
mixture can model this

I Non-stationary noise can
be modelled by having
more than one state at
the cost of multiplying the
total number of states
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Example SpeeCon Database
I Office - 200 speakers

I at least 4 different rooms (close and far wall)
I close talk, hands-free, medium distance (0.75 m),

far distance (2 m)
I Public Place - 200 speakers

I at least 2 locations: hall > 100 m2 and outdoors
I Entertainment - 75 speakers

I at least 3 different living rooms with radio on/off,
I Car - 75 speakers

I middle or upper class car (VW Golf, Opel Astra,
Mercedes A Class, Ford Mondeo, Mercedes C
Class, Audi A6)

I motor on/off, city 30-70, road 60-100, highway
90-130 km/h

I Children
I 50 speakers (children’s room)
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Retraining on Compensated Features
I The algorithms for removing noise from noisy

speech are not perfect
I Retraining can compensate for this
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Modelling Non-stationary Noise

I speaker noise (clearing voice, breathing, lip
smack)

I door slams, keyboard, other speakers

I can be between words or overlap with them
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Approach 1: Explicit Noise Modelling

I Include non-speech labels in the training data

I Perform training

I Update the transcription with optional noise
between words

I Retrain

I Problem when speech and noise overlap in time
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Approach 2: Speech/noise decomposition

I During recognition

I 3-dimensional Viterbi

I Computationally complex

Observations

Speech
HMM

Noise
HMM
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Confidence Measures

I errors are unavoidable

I in a larger system essential to diagnose errors

I dialogue system may be able to correct them
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Confidence Measures

If accurate, P(words|sounds) best confidence
measure
Problem: in

P(words|sounds) =
P(sounds|words)P(words)

P(sounds)

P(sounds) is usually not computed (arg max)
In general

P(sounds) =
∑

words

P(sounds|words)P(words)
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Filler models

P(sounds) =
∑

words

P(sounds|words)P(words)

I General purpose recogniser
I should be able to “fill the holes” of the target

recogniser
I often loop of phones
I any word sequence is allowed (including out of

vocabulary)
I can be done word by word (segmentation from

target recogniser)
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Word Spotting

I do not recognise all the words

I only small number of keywords

I can build models of “antiwords”
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Transformation Models

Use subword units in the confidence. If a word has
N phones:

CS(word) =
N∑
i=1

fi(CS(phonei))

where
fi(x) = aix + bi

and can be optimised on the training data
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Combination Models

use combination of several features:

I word stability when changing language model
parameters

I average number of active hypothesis at word
end

I acoustic score per frame within words
normalised to active senones

I . . .

A linear classifier works well
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