
Deep Neural Networks
DT2118 Speech and Speaker Recognition

Giampiero Salvi

KTH/CSC/TMH giampi@kth.se

VT 2016

1 / 52

http://www.kth.se
http://www.csc.kth.se
http://www.speech.kth.se
mailto:giampi@kth.se


Literature

D. Yu and L. Deng. Automatic
Speech Recognition, a Deep
Learning Approach. Springer,
2015
Available in PDF through KTH
Library

2 / 52



Outline

State-to-Output Probability Model

Artificial Neural Networks
Perceptron
Multi Layer Perceptron
Error Backpropagation
Hybrid HMM-MLP

Deep Learning (Initialization)
Deep Neural Networks
Restricted Boltzmann Machines
Deep Belief Networks

3 / 52



Outline

State-to-Output Probability Model

Artificial Neural Networks
Perceptron
Multi Layer Perceptron
Error Backpropagation
Hybrid HMM-MLP

Deep Learning (Initialization)
Deep Neural Networks
Restricted Boltzmann Machines
Deep Belief Networks

4 / 52



State-to-Output Probability Model

. . . zn−1 zn zn+1 . . .

. . . xn−1 xn xn+1 . . .

is responsible for the discriminative power of the
whole model

I GMMs used because easy to train and adapt

I discriminative training can improve results

5 / 52



State-to-Output Probability Model

. . . zn−1 zn zn+1 . . .

. . . xn−1 xn xn+1 . . .

is responsible for the discriminative power of the
whole model

Alternatives:
I artificial neural networks (ANNs)
I deep neural networks (DNNs)
I support vector machines (SVMs) not used for

ASR
5 / 52



Outline

State-to-Output Probability Model

Artificial Neural Networks
Perceptron
Multi Layer Perceptron
Error Backpropagation
Hybrid HMM-MLP

Deep Learning (Initialization)
Deep Neural Networks
Restricted Boltzmann Machines
Deep Belief Networks

6 / 52



Perceptron

Known since the 1950’s [7]

x0

x1

x2

x3

x4

Input
layer

∑
Sum

w0
w1
w2
w3
w4

f

Transfer
Function

y

Output

[7] F. Rosenblatt. The perceptron: A perceiving and recognizing automaton. Tech.
rep. 85-460-1. Cornell Aeronautical Laboratory, 1957

7 / 52



Perceptron input/output

y = f

(
b +

∑
i

wixi

)
where

f (z) =
1

1 + e−z
sigmoid

f (z) =
ez − e−z

ez + e−z
hyperbolic tangent

f (z) = max(0, z) rectified linear unit

Equivalent to logistic regression (b = w0x0 bias)

8 / 52



Preceptron: Illustration

http://playground.tensorflow.org/

9 / 52

http://playground.tensorflow.org/


Perceptron: Linear Classification
Learning adjust weights to correct errors

y
1

y
2

y1

a

10 / 52



Multi-layer Perceptron [6]

x0 x1 x2 x3 x4Input

h0 h1 h2 h3 h4 h5Hidden

y1 y2 y3Output

[6] F. Rosenblatt. Principles of neurodynamics. perceptrons and the theory of brain
mechanisms. Tech. rep. DTIC Document, 1961

11 / 52



Universal Approximation Theorem

I First proposed by Gybenko [3]

I one single hidden layer and finite but
appropriate number of neurons

I can approximate any function in RN with mild
constraints

[3] G. Gybenko. “Approximation by superposition of sigmoidal functions”. In: Math-
ematics of Control, Signals and Systems 2.4 (1989), pp. 303–314

12 / 52



Multi-layer Perceptron: Training
Backpropagation algorithm [8]

x0 x1 x2
xd

input units

bias unit

output unit

hidden layer

[8] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations
by error propagation. Tech. rep. DTIC Document, 1985

13 / 52



Multi-layer Perceptron: Training
Backpropagation algorithm [8]

x0 x1 x2
xd

input units

bias unit

output unit

hidden layer

E

[8] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations
by error propagation. Tech. rep. DTIC Document, 1985

13 / 52



Learning Criteria

Ideally minimise Expected Loss:

JEL = E
[
J(W ,B , o, y)

]
=

∫
o

J(W ,B , o, y)p(o)do

where o = features, y = labels

but we do not know p(o)

Use empirical learning criteria instead:

I Mean Square Error (MSE)

I Cross Entropy (CE)

14 / 52



Mean Square Error Criterion

JMSE =
1

M

M∑
m=1

JMSE(W ,B , om, ym)

JMSE(W ,B , om, ym) =
1

2

∥∥vL − y
∥∥2

=
1

2

(
vL − y

)T (
vL − y

)

15 / 52



Cross Entropy Criterion

JCE =
1

M

M∑
m=1

JCE(W ,B , om, ym)

JCE(W ,B , om, ym) = −
C∑
i=1

yi log vLi

Equivalent to minimising Kullback-Leibler
divergence (KLD)

16 / 52



Update rules

W l
t+1 ← W l

t − ε∆W l
t

blt+1 ← blt − ε∆blt

To compute ∆W l
t and ∆blt we need the gradient of

the criterion function.
Key trick: chain rule of gradients f (g(x)):

∂f

∂x
=
∂f

∂g

∂g

∂x

17 / 52



Backpropagation: Properties

I weights only depend on neighbouring variables

I algorithm finds local optimum

I sensitive to initialisation

18 / 52



Practical Issues

I preprocessing: Cepstral Mean Normalisation

I initialisation: random (symmetry breaking),
linear range of activation function

I regularisation (weight decay, dropout)

I batch size selection

I sample randomisation

I momentum

I learning rate and stopping criterion

19 / 52



Output Layer

Regression tasks: Linear layer

vL = zL = W LvL−1 + bL

Classification tasks: Softmax layer

vLi = softmaxi(z
L) =

ez
L
i∑C

j=1 e
zLj

20 / 52



Probabilistic Interpretation

1. vLi ∈ [0, 1] ∀i
2.
∑C

j=1 v
L
i = 1

Output activations are posterior probabilities of the
classes given the observations

vLi = P(i |o)

In speech: P(state|sounds)

21 / 52



Hybrid HMM+Multi Layer Perceptron

Figure from Yu and Deng
22 / 52



Combining probabilities [1]
I HMMs use likelihoods P(sound|state)
I MLPs and DNNs estimate posteriors
P(state|sound)

We can combine with Bayes:

P(sound|state) =
P(state|sound)P(sound)

P(state)

I P(state) can be estimated from the training set
I P(sound) is constant and can be ignored

Use scaled likelihoods:

P̄(sound|state) =
P(state|sound)

P(state)

[1] H. Bourland and C. J. Wellekens. “Links Between Markov Models and Multilayer
Perceptrons”. In: IEEE Trans. Pattern Anal. Mach. Intell. 12.12 (1990) 23 / 52



State-to-Output Probability Model

. . . zn−1 zn zn+1 . . .

. . . xn−1 xn xn+1 . . .

Use ANNs for P(xn|zn)

24 / 52



Time-Delayed NNs [11]

[11] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang. “Phoneme
Recognition Using Time-Delay Neural Networks”. In: IEEE Trans. Acoust.,
Speech, Signal Process. 37.3 (1989)

25 / 52



Recurrent ANNs [5]

[5] T. Robinson and F. Fallside. “A recurrent error propagation network speech recog-
nition system”. In: Computer Speech and Language 5.3 (1991), pp. 259–274

26 / 52



HMM + RNN Dependencies

. . . zn−1 zn zn+1 . . .

. . . xn−1 xn xn+1 . . .

How do the two models interact? [9]

[9] G. Salvi. “Dynamic Behaviour of Connectionist Speech Recognition with Strong
Latency Constraints”. In: Speech Communication 48.7 (July 2006), pp. 802–
818

27 / 52



Outline

State-to-Output Probability Model

Artificial Neural Networks
Perceptron
Multi Layer Perceptron
Error Backpropagation
Hybrid HMM-MLP

Deep Learning (Initialization)
Deep Neural Networks
Restricted Boltzmann Machines
Deep Belief Networks

28 / 52



Deep Neural Network

x0 x1 x2 x3 x4Input

h10 h11 h12 h13 h14 h15Hidden 2

h20 h21 h22 h23 h24 h25Hidden 3

h30 h31 h32 h33 h34 h35Hidden 4

y1 y2 y3Output

29 / 52



DNN: Motivation

I depth ∼ abstraction

I good initialisation (see later)

I fast computers, large datasets

30 / 52



DNN and MLPs

I no conceptual difference from MLPs

I Backpropagation alone not powerful enough [2]

I local minima

I vanishing gradients

(later BP has been proven to be sufficient)

[2] D. Erhan, Y. Bengio, A. Courville, P.-A. Mansagol, and P. Vincent. “Why Does
Unsupervised Pre-training Help Deep Learning?” In: Journal of Machine Learning
Research 11 (2010), pp. 625–660

31 / 52



Deep Learning possible with Pre-Training

I pioneered by Geoffry Hinton (Univ. Toronto)

I unifies properties of generative and
discriminative models

I most of the large companies are using it
(Microsoft, Google, Nuance, IBM)

I most promising technique at the moment

32 / 52



Pre-Training: Idea

discriminative

stuff

observation label

generative

stuff

observation label

. . . but HMMs with Gaussian Mixure Models are
also generative: why is this better?

33 / 52



Pre-Training: Idea

discriminative

stuff

observation label

generative

stuff

observation label

. . . but HMMs with Gaussian Mixure Models are
also generative: why is this better?

33 / 52



Pre-Training: Idea

discriminative

stuff

observation label

generative

stuff

observation label

. . . but HMMs with Gaussian Mixure Models are
also generative: why is this better?

33 / 52



Pre-Training: Idea

discriminative

stuff

observation label

generative

stuff

observation label

. . . but HMMs with Gaussian Mixure Models are
also generative: why is this better?

33 / 52



Pre-Training: Idea

discriminative

stuff

observation label

generative

stuff

observation label

. . . but HMMs with Gaussian Mixure Models are
also generative: why is this better?

33 / 52



Deep Learning: Idea #2

1. initialise DNN with Restricted Boltzmann
Machines (RBM) that can be trained
unsupervised

2. use fast learning procedure (Hinton)

3. use ridiculous amounts of unlabelled (cheap)
data to train a ridiculous number of parameters
in an unsupervised fashion

4. at the end, use small amounts of labelled
(expensive) data and backpropagation to learn
the labels

34 / 52



Restricted Boltzmann Machines (RBMs)
First called Harmonium [10]

I binary nodes: Bernoulli distribution

I continuous nodes: Gaussian-Bernoulli

[10] P. Smolensky. “Information processing in dynamical systems: Foundations of
harmony theory”. In: Department of Computer Science, University of Colorado,
Boulder, 1986. Chap. 6

35 / 52



Restricted Boltzmann Machines (RBMs)

Energy (Bernoulli):

E (v,h) = −aTv − bTh− hTWv

Energy (Gaussian-Bernoulli):

E (v,h) =
1

2
(v − a)T (v − a)− bTh− hTWv

36 / 52



RBM: Probabilistic Interpretation

P(v,h) =
e−E (v,h)∑
v,h e

−E (v,h)

Posteriors (conditional independence):

P(h|v) = · · · =
∏
i

P(hi |v)

and
P(v|h) = · · · =

∏
i

P(vi |h)

37 / 52



Binary Units: Cond Prob

Posterior equals sigmoid function!!

P(hi = 1|v) =
e(bi1+1Wi,∗v)

e(bi1+1Wi,∗v) + e(bi0+0Wi,∗v)

=
e(bi1+1Wi,∗v)

e(bi1+1Wi,∗v) + 1

= σ(bi1 + 1Wi ,∗v)

Same as Multi Layer Perceptron (viable for
initialisation!)

38 / 52



Gaussian Units: Cond Prob

P(v|h) = N (v;µ,Σ)

with

µ = WTh + a

Σ = I

39 / 52



RBM Training

Stochastic Gradient Descend (minimise the negative
log likelihood)

JNLL(W, a,b, v) = − logP(v) = F (v)+log
∑

v

e−F (v)

where

F (v) = − log

(∑
h

e−E (v,h)

)
is the free energy of the system.
BUT: the gradient can not be computed exactly

40 / 52



RBM Gradient

∂JNLL(W, a,b, v)

∂θ
=
∂F (v)

∂θ
−
∑

ṽ

p(ṽ)
∂F (ṽ)

∂θ

I first term increases prob of training data

I second term decreases prob density defined by
the model

41 / 52



RBM Stochastic Gradient
The general form is:

∇θJNLL(W, a,b, v) = −
[〈

∂E (v,h)

∂θ

〉
data

−
〈
∂E (v,h)

∂θ

〉
model

]
Example: visible layer

∇wij
JNLL(W, a,b, v) = −

[
〈vihj〉data
−〈vihj〉model

]
42 / 52



Gibbs Sampling

〈vihj〉model computed with sampling

Sample joint distribution of N variables, one at a
time:

P(Xi |X−i)
where X−i are all the other variables

BUT: it takes exponential time to compute exactly

43 / 52



Contrastive Divergence

Two tricks:

1. initialise the chain with a training sample

2. do not wait for convergence

44 / 52



Contrastive Divergence

Two tricks:

1. initialise the chain with a training sample

2. do not wait for convergence

44 / 52



RBMs and Deep Belief Networks

Figure from Yu and Deng
45 / 52



Deep Belief Networks: Training

Yee-Whye Teh (one of Hinton’s students) observed
that DBNs can be trained greedily
for each layer:

1. train a RBM unsupervised

2. excite the network with training data to
produce outputs

3. use the outputs to train next RBM

46 / 52



Final Step: Supervised Training

x0 x1 x2 x3 x4Input

h10 h11 h12 h13 h14 h15Hidden 2

h20 h21 h22 h23 h24 h25Hidden 3

h30 h31 h32 h33 h34 h35Hidden 4

y1 y2 y3Output

47 / 52



The importance of pre-training

I 2006: Backpropagation alone not powerful
enough [2]

I 2016: Backpropagation on large data sets
(with tricks) is good enough (missing citation)

[2] D. Erhan, Y. Bengio, A. Courville, P.-A. Mansagol, and P. Vincent. “Why Does
Unsupervised Pre-training Help Deep Learning?” In: Journal of Machine Learning
Research 11 (2010), pp. 625–660

48 / 52



Deep Learning: Performance

I state-of-the-art on most ASR tasks

I Made people from University of Toronto,
Microsoft, Google and IBM write a paper
together [4]

I experiments with learning the features from
speech signal

Yu and Deng’s book has many examples

[4] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. Sainath, and B. Kingsbury. “Deep Neural Networks for Acoustic
Modeling in Speech Recognition”. In: IEEE Signal Processing Magazine (2012)

49 / 52



ANNs in ASR: Advantages

I discriminative in nature

I powerful time model:

I Time-Delayed Neural Networks (TDNNs)

I Recurrent Neural Networks (RNNs)

50 / 52



ANNs in ASR: Disadvantages

I training requires state level annotations
(no EM available)

I usually annotations obtained with forced
alignment (Viterbi training)

I not easy to adapt

I we still need GMM-HMMs for the training

51 / 52



Typical Training Procedure

1. train a full context dependent GMM-HMM
system

2. cluster CD HMM states into senones (order of
1000)

3. use senones to define output of DNN

4. run forced alignment with GMM-HMMs

5. train DNN with forced aligned transcriptions

52 / 52


	State-to-Output Probability Model
	Artificial Neural Networks
	Perceptron
	Multi Layer Perceptron
	Error Backpropagation
	Hybrid HMM-MLP

	Deep Learning (Initialization)
	Deep Neural Networks
	Restricted Boltzmann Machines
	Deep Belief Networks


