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State-to-Output Probability Model
is responsible for the discriminative power of the
whole model

» GMMs used because easy to train and adapt
» discriminative training can improve results
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State-to-Output Probability Model
is responsible for the discriminative power of the
whole model

Alternatives:
» artificial neural networks (ANNs)
» deep neural networks (DNNs)

» support vector machines (SVMs) not used for
ASR
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Perceptron

Known since the 1950’s [7]
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[7] F. Rosenblatt. The perceptron: A perceiving and recognizing automaton.
rep. 85-460-1. Cornell Aeronautical Laboratory, 1957

Tech.
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Perceptron input/output

y—f<b+ZW;x;>

where
1 : :
f(z) = e sigmoid
f(z) = eoe” hyperbolic tangent
e’ +e”
f(z) = max(0,z) rectified linear unit

Equivalent to logistic regression (b = wyxy bias)



Preceptron: lllustration
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Perceptron: Linear Classification
Learning adjust weights to correct errors
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Multi-layer Perceptron [6]

Output

Hidden

Input

[6] F. Rosenblatt. Principles of neurodynamics. perceptrons and the theory of brain
mechanisms. Tech. rep. DTIC Document, 1961
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Universal Approximation Theorem

» First proposed by Gybenko [3]
» one single hidden layer and finite but
appropriate number of neurons

» can approximate any function in R’ with mild
constraints

[3] G. Gybenko. “Approximation by superposition of sigmoidal functions”. In: Math-

ematics of Control, Signals and Systems 2.4 (1989), pp. 303-314
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Multi-layer Perceptron: Training
Backpropagation algorithm [8]

output unit

hidden layer

X, X, Xa

[8] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations
by error propagation. Tech. rep. DTIC Document, 1985
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Multi-layer Perceptron: Training
Backpropagation algorithm [8]

E
output unit

[8] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations
by error propagation. Tech. rep. DTIC Document, 1985
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Learning Criteria

Ideally minimise Expected Loss:

JeL = E[J(W, B, o,y)} = /J(W, B, o,y)p(o)do

o

where o = features, y = labels
but we do not know p(o)

Use empirical learning criteria instead:

> Mean Square Error (MSE)
» Cross Entropy (CE)



Mean Square Error Criterion

M
1 m m
IMSE = MZJMSE(W: B,o™, y™)

m=1

1
IMSE(W. B.0™y"™) = SIv" =y
1

= (V' =y) (V-
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Cross Entropy Criterion

M

1 m m

JcE = MZJCE(W,B,O ,y™)
m=1

C
JCE(W7 B: Omaym) - - Zyl |og ViL
i=1

Equivalent to minimising Kullback-Leibler
divergence (KLD)



Update rules

W, + W/ —eaw,
b, + b, —eAb,

To compute AW/ and Ab! we need the gradient of
the criterion function.
Key trick: chain rule of gradients f(g(x)):

of _0f g
Ox  Ogox



Backpropagation: Properties

» weights only depend on neighbouring variables
» algorithm finds local optimum
» sensitive to initialisation
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Practical Issues

» preprocessing: Cepstral Mean Normalisation

> initialisation: random (symmetry breaking),
linear range of activation function

» regularisation (weight decay, dropout)
» batch size selection

» sample randomisation

» momentum

» learning rate and stopping criterion



Output Layer

Regression tasks: Linear layer
VL _ ZL _ WLVL—l + bL

Classification tasks: Softmax layer

vi = softmax;(z") = —



Probabilistic Interpretation

1. vt e[0,1] Vi
2' ZJC:]_ ViL - 1

Output activations are posterior probabilities of the
classes given the observations

vi = P(ilo)
In speech: P(state|sounds)

21/52



Hybrid HMM-+Multi Layer Perceptron

Transition Probabilities
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Figure from Yu and Deng
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Combining probabilities [1]
» HMMs use likelihoods P(sound|state)

» MLPs and DNNs estimate posteriors
P(state|sound)

We can combine with Bayes:
P(state|sound)P(sound)
P(state)

P(sound|state) =

» P(state) can be estimated from the training set
» P(sound) is constant and can be ignored
Use scaled likelihoods:

- P(stat d
P(sound|state) = (sPa(SiLs:el;n )

[1] H. Bourland and C. J. Wellekens. “Links Between Markov Models and Multilayer
Perceptrons”. |In: IEEE Trans. Pattern Anal. Mach. Intell. 12.12 (1990)

23
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State-to-Output Probability Model

Use ANNs for P(x,|z,)



Time-Delayed NNs [11]

Fig. 1. A Time-Delay Neural Network (TDNN) unit.

[11] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang. “Phoneme
Recognition Using Time-Delay Neural Networks”.  In: [EEE Trans. Acoust.,
Speech, Signal Process. 37.3 (1989)

25 /52



Recurrent ANNs [5]

]

x(t)

ylE+D)

x(F+1)

[5] T. Robinson and F. Fallside. “A recurrent error propagation network speech recog-

nition system”. In: Computer Speech and Language 5.3 (1991), pp. 259-274

Time

delay
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HMM 4+ RNN Dependencies

T

How do the two models interact? [9]

[9] G. Salvi. “Dynamic Behaviour of Connectionist Speech Recognition with Strong
Latency Constraints”. In: Speech Communication 48.7 (July 2006), pp. 802—
818
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Deep Neural Network

Output

Hidden 4

Hidden 2
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DNN: Motivation

» depth ~ abstraction
» good initialisation (see later)
» fast computers, large datasets

30 /52



DNN and MLPs

» no conceptual difference from MLPs

» Backpropagation alone not powerful enough [2]
» local minima

» vanishing gradients

(later BP has been proven to be sufficient)

[2] D. Erhan, Y. Bengio, A. Courville, P.-A. Mansagol, and P. Vincent. “Why Does
Unsupervised Pre-training Help Deep Learning?" In: Journal of Machine Learning
Research 11 (2010), pp. 625-660
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Deep Learning possible with Pre-Training

» pioneered by Geoffry Hinton (Univ. Toronto)

» unifies properties of generative and
discriminative models

» most of the large companies are using it
(Microsoft, Google, Nuance, IBM)

» most promising technique at the moment
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Pre-Training: Idea

discriminative

stuff

/

observation — label



Pre-Training: Idea

discriminative

__________________________



Pre-Training: Idea

discriminative generative

stuff stuff

......... AS— /N

observation — label observation label

__________________________



Pre-Training: Idea

discriminative generative
stuff / stuff \
observation — label observation label

__________________________
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Pre-Training: Idea

discriminative generative
stuff / stuff \
observation — label observation label

__________________________

... but HMMs with Gaussian Mixure Models are
also generative: why is this better?
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Deep Learning: ldea #2

1.

initialise DNN with Restricted Boltzmann
Machines (RBM) that can be trained
unsupervised

use fast learning procedure (Hinton)

use ridiculous amounts of unlabelled (cheap)
data to train a ridiculous number of parameters
in an unsupervised fashion

. at the end, use small amounts of labelled

expensive data and backpropa ation to learn
g
the labels

34 /52



Restricted Boltzmann Machines (RBMs)

First called Harmonium [10]

» binary nodes: Bernoulli distribution
» continuous nodes: Gaussian-Bernoulli

[10] P. Smolensky. “Information processing in dynamical systems: Foundations of
harmony theory”. In: Department of Computer Science, University of Colorado,
Boulder, 1986. Chap. 6
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Restricted Boltzmann Machines (RBMs)

Energy (Bernoulli):
E(v,h)=—a’v—b"h—h"Wyv
Energy (Gaussian-Bernoulli):
1

E(v,h) = S(v - a)’(v—a)—b’h—h"Wy



RBM: Probabilistic Interpretation

e—E(v,h)
P(v,h) = S e EGh)
Posteriors (conditional independence):
P(hjv) = --- = H P(hi|v)

and

Pvlh) = = HP(vllh)
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Binary Units: Cond Prob

Posterior equals sigmoid function!!

o(b1+1W; .v)

e(b;1+1W;7*V)
e(b,-1+1W,-’*v) + 1

= O'(b,']. + 1W,"*V)

Same as Multi Layer Perceptron (viable for
initialisation!)
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Gaussian Units: Cond Prob

P(vlh) = N(v;u,X)
with

t=WTh+a
=1

39 /52



RBM Training

Stochastic Gradient Descend (minimise the negative
log likelihood)

INLL(W,a,b,v) = —log P(v) = F(v)+|ogz e FV)

where
F(v) = —log (Z eE("’h)>
h

is the free energy of the system.
BUT: the gradient can not be computed exactly

40 /52



RBM Gradient

O\ L(W.a,b.v)  9F(v) -\ OF (V)
06 Y _;”(") 06
» first term increases prob of training data

» second term decreases prob density defined by
the model

41 /52



RBM Stochastic Gradient

The general form is:

OE(v, h)

V@JNLL(W,a,b,V) = [<
data

< \

VWUJNLL(anvbav) - _[<V'h'>data
(V,h)

rnoded



Gibbs Sampling
(Vihj) mode| computed with sampling

Sample joint distribution of N variables, one at a

time:
P(Xi|X-i)

where X_; are all the other variables

BUT: it takes exponential time to compute exactly

43 /52



Contrastive Divergence
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Contrastive Divergence
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1. initialise the chain with a training sample

2. do not wait for convergence
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RBMs and Deep Belief Networks

Figure from Yu and Deng
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Deep Belief Networks: Training

Yee-Whye Teh (one of Hinton's students) observed
that DBNSs can be trained greedily
for each layer:

1. train a RBM unsupervised

2. excite the network with training data to
produce outputs

3. use the outputs to train next RBM

46 /52



Output

Final Step: Supervised Training

Hidden 4

Hidden 2
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The importance of pre-training

» 2006: Backpropagation alone not powerful
enough [2]

» 2016: Backpropagation on large data sets
(with tricks) is good enough (missing citation)

[2] D. Erhan, Y. Bengio, A. Courville, P.-A. Mansagol, and P. Vincent. “Why Does
Unsupervised Pre-training Help Deep Learning?" In: Journal of Machine Learning
Research 11 (2010), pp. 625-660
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Deep Learning: Performance

» state-of-the-art on most ASR tasks

» Made people from University of Toronto,
Microsoft, Google and IBM write a paper
together [4]

» experiments with learning the features from
speech signal

Yu and Deng's book has many examples

[4] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. Sainath, and B. Kingsbury. “Deep Neural Networks for Acoustic
Modeling in Speech Recognition”. In: IEEE Signal Processing Magazine (2012)
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ANNs in ASR: Advantages

discriminative in nature

v

v

powerful time model:
Time-Delayed Neural Networks (TDNNs)
Recurrent Neural Networks (RNNs)

v

v
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ANNs in ASR: Disadvantages

» training requires state level annotations
(no EM available)

» usually annotations obtained with forced
alignment (Viterbi training)

» not easy to adapt
» we still need GMM-HMMs for the training



Typical Training Procedure

1. train a full context dependent GMM-HMM
system

2. cluster CD HMM states into senones (order of
1000)

3. use senones to define output of DNN
4. run forced alignment with GMM-HMMs
5. train DNN with forced aligned transcriptions
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