
Matrix Algebra
Mats Bengtsson/Magnus Jansson

Deadline: 2016–04–27, 10.00

Homework #4

Numbers below refer to problems in Horn, Johnson “Matrix analysis.” A number
1.1.P.2 refers to Problem 2 in Section 1.1.

1. (4.1.P6+P7) Let A = [aij] and B = [bij] be given.

(a) Show that x∗Ax = x∗Bx for all x ∈ Cn if and only if A = B.

(b) Show that xTAx = 0 for all x ∈ Cn if and only if AT = −A.

(c) Give an example showing that A and B need not be equal if xTAx =
xTBx for all x ∈ Cn.

2. (4.1.P19) Let A ∈ Mn be a projection (A2 = A). One says that A is a
Hermitian projection if A is Hermitian, and that A is an orthogonal projection
if the range of A is orthogonal to its null space. Use the basic properties of
Hermitian matrices to show that A is a Hermitian projection if and only if
it is an orthogonal projection.

Hint: x = (I−A)x+Ax is a sum of vectors in the null space and range of A. If
the null space is orthogonal to the range, then x∗Ax = ((I−A)x+Ax))∗Ax =
x(A∗A)x is real for all x.

3. Prove that the formulation of Courant-Fischer’s max-min theorem shown in
the lecture slides (Theorem 4.2.6 in the 2nd edition of the book) is equivalent
to

λk = min
w1,...,wn−k

max
x 6=0

x⊥w1,...,wn−k

x∗Ax

x∗x

λk = max
w1,...,wk−1

min
x 6=0

x⊥w1,...,wk−1

x∗Ax

x∗x

where wi, x ∈ Cn and the vectors {wi} are allowed to be linearly dependent.

It is only necessary to prove one of the two expressions above, the other proof
will be very similar.

4. Given A = A∗ ∈Mn and B = B∗ ∈Mn where B is positive definite.

(a) show that there is a non-singular matrix X such that X∗AX = C and
X∗BX = D where both C and D are diagonal.

Hint: Write B = LL∗ (for example, L can be the Cholesky factor, which
we will study in more detail in Lect. 6), apply the spectral factorization
on the matrix L−1AL−∗ and use the result to formX. One of the matrices
C and D will end up being the identity matrix.



(b) Given a matrix X such that X∗AX = C and X∗BX = D where both
C and D are diagonal (not necessarily obtained using the technique
you derived above), show that the columns of X are eigenvectors of the
following generalized eigenvalue problem

Ax = λBx

and describe how the corresponding eigenvalues can be obtained from C
and D.

5. (4.3.P3, 4.3.P7 in the old edition) If A,B ∈ Mn are Hermitian and their
eigenvalues are arranged in nondecreasing order, explain why λi(A + B) ≤
min{λj(A) + λk(B) : j + k = i+ n}.

6. (4.4.P2) Provide details for the following derivation of the Autonne-Takagi
factorization, using real valued representations. Let A ∈ Mn be symmetric.
If A is singular and rankA = r, it is unitarily congruent to A′⊕0n−r, in which
A′ ∈Mr is non-singular and symmetric (no need to prove this step). Assume
therefore WLOG that A is nonsingular. Let A = A1 + iA2 with A1, A2 real

and let x, y ∈ Rn. Consider the real representation R2(A) =

[
A1 A2

A2 −A1

]
, in

which A1, A2 and R2(A) are symmetric. Show that

(a) R2(A) is nonsingular.

(b) R2(A)

[
x
−y

]
= λ

[
x
−y

]
if and only if R2(A)

[
x
−y

]
= −λ

[
x
−y

]
, so the

eigenvalues of R2(A) appear in ± pairs.

(c) Let

[
x1
−y1

]
, . . . ,

[
xn
−yn

]
be orthonormal eigenvectors of R2(A) associated

with its positive eigenvalues λ1, . . . , λn, let X =
[
x1 . . . xn

]
, Y =[

y1 . . . yn
]
, Σ = diag(λ1, . . . , λn), V =

[
X Y
−Y X

]
and Λ = Σ⊕ (−Σ).

Then V is real orthogonal and R2(A) = V ΛV T . Let U = X − iY .
Explain why U is unitary and show that UΣUT = A.

7. (a) Let α = [αi] ∈ Rn and β = [βi], where β1 = · · · = βn = 1
n

∑
αi. Show

that α majorizes β.

(b) [Optional, only the solution to a) is considered in the grading] Let Λ =
diag(α1, . . . , αn). Try to find a unitary matrix U ∈ Mn such that all
diagonal elements of UΛU∗ are equal. Note that this is a simple special
case of Theorem 4.3.48. However, in this special case, it is easy to
determine a matrix U that works for all α (in general, U will have to
depend on the two vectors).

8. Let A = A∗ ∈Mn be a positive definite matrix (λi(A) > 0). Show that

log det(A)− Tr(A)

is maximized by A = I.


