DT2118
 Speech and Speaker Recognition Lecture 05: Acoustic and Lexical Modelling

Giampiero Salvi

KTH/CSC/TMH giampi@kth.se

VT2016

Components of ASR System

Representation

Outline

Acoustic Models
Limitations
Practical Issues

Lexical Models

Evaluation

A probabilistic perspective: Bayes' rule

$$
P(\text { words } \mid \text { sounds })=\frac{P(\text { sounds } \mid \text { words }) P(\text { words })}{P(\text { sounds })}
$$

- P (sounds|words) can be estimated from training data and transcriptions
- P (words): a priori probability of the words (Language Model)
- P (sounds): a priori probability of the sounds (constant, can be ignored)

Probabilistic Modelling

Problem: How do we model P (sounds|words)?

Probabilistic Modelling

Problem: How do we model P (sounds|words)?

Every feature vector (observation at time t) is a continuous stochastic variable (e.g. MFCC)

Stationarity

- we need to model short segments independently
- the fundamental unit can not be the word, but must be shorter
- usually we model three segments for each phoneme

Local probabilities (frame-wise)

If segment sufficiently short

$$
P(\text { sounds } \mid \text { segment })
$$

can be modelled with standard probability distributions

$$
\phi\left(o, s_{a}\right)=P\left(o \mid s_{a}\right)
$$

Usually Gaussian or Gaussian Mixture but also discrete distributions

Global Probabilities (utterance)

Problem: How do we combine the different P (sounds|segment) to form P (sounds|words)?
Answer: Hidden Markov Model (HMM)

wash

State to output probability model

- Discrete HMMs (DHMMs)
- vector quantisation
- Continuous HMMs
- Single Gaussian $\phi_{j}\left(x_{n}\right)=N\left(x_{n} \mid \mu_{j}, \Sigma_{j}\right)$
- Gaussian Mixture
- Semi-continuous HMMs (SCHMMs)

Discrete HMMs

- quantise feature vectors
- observation: sequence of discrete symbols
- $\phi_{j}\left(x_{n}\right)$ simple discrete probability distribution
- problem: quantisation error

Discrete HMMs: learn $\phi_{j}\left(x_{n}\right)$

Remember that

$$
\gamma_{n}(i, j)=P\left(z_{n-1}=s_{i}, z_{n}=s_{j} \mid X, \theta\right)
$$

then

$$
\xi_{n}(j)=P\left(z_{n}=s_{j} \mid X, \theta\right)=\sum_{i=1}^{M} \gamma_{n}(i, j)
$$

Update rule:

$$
\phi_{j}\left(x_{n}=k\right)=\frac{E\left[x_{n}=k, z_{n}=s_{j}\right]}{E\left[z_{n}=s_{j}\right]}=\frac{\sum_{n:\left(x_{n}=k\right)} \xi_{n}(j)}{\sum_{n=1}^{N} \xi_{n}(j)}
$$

HMMs with Gaussian Emission Probability

$$
\phi_{j}\left(x_{n}\right)=N\left(x_{n} \mid \mu_{j}, \Sigma_{j}\right)
$$

Update rules:

$$
\begin{aligned}
& \mu_{j}=\frac{\sum_{n=1}^{N} \xi_{n}(j) x_{n}}{\sum_{n=1}^{N} \xi_{n}(j)} \\
& \Sigma_{j}=\frac{\sum_{n=1}^{N} \xi_{n}(j)\left(x_{n}-\mu_{j}\right)\left(x_{n}-\mu_{j}\right)^{T}}{\sum_{n=1}^{N} \xi_{n}(j)}
\end{aligned}
$$

HMMs with Mixture Emission Probability

Often the Emission probability is modelled as a Mixture of Gaussians

$$
\begin{aligned}
\phi_{j}\left(x_{n}\right)= & \sum_{k=1}^{K} w_{j k} N\left(x_{n} \mid \mu_{j k}, \Sigma_{j k}\right) \\
& \sum_{k=1}^{M} w_{j k}=1
\end{aligned}
$$

HMMs with Mixture Emission Probability

Emission:

$$
\begin{aligned}
p\left(x_{n} \mid z_{n}, m_{n}\right) & =\mathcal{N}\left(x_{n} ; \mu_{z_{n}, m_{n}}, \Sigma_{z_{n}, m_{n}}\right) \\
p\left(m_{n} \mid z_{n}\right) & =W\left(m_{n}, z_{n}\right)
\end{aligned}
$$

Semi-Continuous HMMs

- All Gaussian distributions in a pool of pdfs
- each $\phi_{j}\left(x_{n}\right)$ is a discrete probability distribution over the pool of Gaussians
- similar to quantisation, but probabilistic
- used for sharing parameters

Modelling Coarticulation

Example peat /pirt/vs wheel/wisl/

Modelling Coarticulation

Context dependent models (CD-HMMs)

- Duplicate each phoneme model depending on left and right context:
- from "a" monophone model
- to "d-a+f", "d-a+g", "I-a+s"... triphone models
- If there are $N=50$ phonemes in the language, there are $N^{3}=125000$ potential triphones
- many of them are not exploited by the language

Amount of parameters

Example:

- a large vocabulary recogniser may have 60000 triphone models
- each model has 3 states
- each state may have 32 mixture components with $1+39 \times 2$ parameters each (weight, means, variances): $39 \times 32 \times 2+32=2528$

Totally it is $60000 \times 3 \times 2528=455$ million parameters!

Similar Coarticulation

/ris/ vs /wis/

Tying to reduce complexity

Example: similar triphones $\mathrm{d}-\mathrm{a}+\mathrm{m}$ and $\mathrm{t}-\mathrm{a}+\mathrm{m}$

- same right context, similar left context
- 3rd state is expected to be very similar
- 2nd state may also be similar

States (and their parameters) can be shared between models

+ reduce complexity
+ more data to estimate each parameter
- fine detail may be lost

Tying to reduce complexity

Example: similar triphones $\mathrm{d}-\mathrm{a}+\mathrm{m}$ and $\mathrm{t}-\mathrm{a}+\mathrm{m}$

- same right context, similar left context
- 3rd state is expected to be very similar
- 2nd state may also be similar

States (and their parameters) can be shared between models

+ reduce complexity
+ more data to estimate each parameter
- fine detail may be lost
done with CART tree methodology

HMM Limitations: Duration modelling

- $P\left(d_{i}=n\right)=a_{i j}^{n}\left(1-a_{i i}\right)$
- Several solutions proposed, but modest improvements

HMM Limitations: First Order

 Assumption

HMM Limitations: First Order

 Assumption
but: increasing order gives modest improvements

HMM Limitations: Conditional

 Independence Assumption

HMM Limitations: Conditional

 Independence Assumption
use dynamic features!

Dynamic Features

Concatenate static MFCCs (or LPCs) to Δ and $\Delta \Delta$ vectors.
Δ_{n} computed as weighted sum of $d_{k}(n)$

$$
\Delta_{n}=\frac{\sum_{k=1}^{K} w_{k} d_{k}(n)}{\sum_{k=1}^{K} w_{k}}
$$

$d_{k}(n)$: finite differences centered around n with interval $2 k$:

$$
d_{k}(n)=\frac{c_{n+k}-c_{n-k}}{2 k}
$$

Similarly for $\Delta \Delta_{n}$

Dynamic Features: Common values

- In HTK $w_{k}=2 k^{2}$
- Usually k goes from 1 to 3
- to compute static $+\Delta+\Delta \Delta$ we need 13 consecutive static vectors (around 130 msec).

HMM Limitations: Conditional

Independence Assumption

Autoregressive HMM [1]

[1] M. Shannon and W. Byrne. "Autoregressive HMMs for speech synthesis". In: Proc. Interspeech. Brighton, U.K., 2009

HMM Limitations: Conditional

Independence Assumption

Autoregressive HMM [1]

Also interesting results with Time Delay Neural Networks (TDNN)

HMMs: Practical Issues

- Initialisation
- Training Criteria
- Probability Representations

Initialisation

Important in order to reach a high local maximum

- Discrete HMM
- Initial zero probability remains zero
- Uniform distribution works reasonably well
- Continuous HMM methods
- k-means clustering
- Proceed from discrete HMM to semi-continuous to continuous
- Start training single Gaussian models.
- Use previously segmented data or "flat start" (equal distribution for all states in the training data)

Training Criteria

- Maximum Likelihood Estimation (MLE)
- Sensitive to inaccurate Markov assumptions
- Maximises model likelihood rather than discrimination between models
- Minimum Classification Error (MCE) and Maximum Mutual Information Estimation (MMIE) might work better
- Maximum A Posteriori (MAP) if we have prior knowledge
- for adaptation and small training data

Probability Representations

Problem: the probabilities become very small
(underflow problem)

- Viterbi decoding (only multiplication): use logarithm
- Forward-backward (multiplication and addition): difficult
- Solution 1: scale by $\left(\sum_{i=1}^{M} \alpha_{n}(i)\right)^{-1}$
- Solution 2: use logarithm and look-up table to speed up $\log \left(p_{1}+p_{2}\right)$

Outline

Acoustic Models Limitations Practical Issues

Lexical Models

Evaluation

Components of ASR System

Representation

Lexical Models

- in general specify sequence of phoneme for each word
- example:

nary"	IPA	X-SAMPA
UK.	/dıkJən(ə) d i/	/dIkS @ n (@)ri/
USA:		/dIkS@nEri/

- expensive resources
- include multiple pronunciations
- phonological rules (assimilation, deletion)

Pronunciation Network

Example: tomato

Assimilation

$$
\begin{aligned}
& \text { did you /dı dз j ə/ } \\
& \text { set you /s } \varepsilon \text { t } 3 \text { / } \\
& \text { last year /l æ st i: } 1 / \\
& \text { because you've /b i: } k \text { ə } 3 u: v /
\end{aligned}
$$

Deletion

find him /faınım/
around this /o \downarrow avnıs/
let me in $/ \mathrm{l} \varepsilon \mathrm{m}$ i: $\mathrm{n} /$

Out of Vocabulary Words

- Proper names often not in lexicon
- derive pronunciation automatically
- English has very complex grapheme-to-phoneme rules
- attempts to derive pronunciation from speech recordings

Outline

Acoustic Models
Limitations
Practical Issues

Lexical Models

Evaluation

Components of ASR System

Representation

ASR Evaluation

- recognition results are sequences of words
- evaluation is non-trivial
- need to realign the recognised sequence to the transcription
- example:
ref: I really wanted to see you
rec: I wanted badly to meet you
- possible to use detailed time alignment
- usually only symbolic level is used
- dynamic programming

Word Accuracy and Word Error Rate (WER)

$$
A=100 \frac{N-S-D-1}{N}
$$

Where

- N : total number of reference words
- S: substitutions
- D: deletions
- I: insertions

$$
W E R=100-A
$$

Word Accuracy: example

Ref/Rec	I	wanted	badly	to	meet	you
l	corr					
really	del					
wanted		corr				
to			ins	corr		
see					sub	
you						corr

6 words, 1 substitution, 1 insertion, 1 deletion

$$
A=100 \frac{6-1-1-1}{6}=50 \%
$$

requires dynamic programming

Effects of Sampling Rate on WER

Sampling Rate Relative Error Reduction

(kHz)	$(\%)$
8	baseline
11	+10
16	+10
22	+0

(from Huang, Acero and Hon)

Effects of Feaures on WER

Feature Set
Relative Error

	Reduction (\%)
13th order LPC cepstrum	baseline
13th order MFCC	+10
16th order MFCC	+0
with Δ and $\Delta \Delta$	+20
with $\Delta \Delta \Delta$	+0

(from Huang, Acero and Hon)

Effect of Modelling Context

Units	Relative Error Reduction (\%)
Context-independent phone	baseline
Context-dependent phone	+25
Clustered triphone	+15
Senone	+24

(from Huang, Acero and Hon)

