DT2118 Speech and Speaker Recognition Lecture 05: Acoustic and Lexical Modelling

Giampiero Salvi

KTH/CSC/TMH giampi@kth.se

VT2016

Components of ASR System

Outline

Acoustic Models Limitations Practical Issues

Lexical Models

Evaluation

A probabilistic perspective: Bayes' rule

$$P(\mathsf{words}|\mathsf{sounds}) = rac{P(\mathsf{sounds}|\mathsf{words})P(\mathsf{words})}{P(\mathsf{sounds})}$$

- P(sounds|words) can be estimated from training data and transcriptions
- P(words): a priori probability of the words (Language Model)
- P(sounds): a priori probability of the sounds (constant, can be ignored)

Probabilistic Modelling

Problem: How do we model *P*(sounds|words)?

Probabilistic Modelling Problem: How do we model *P*(sounds|words)?

Every feature vector (observation at time t) is a continuous stochastic variable (e.g. MFCC)

Stationarity

- we need to model short segments independently
- the fundamental unit can not be the word, but must be shorter
- usually we model three segments for each phoneme

Local probabilities (frame-wise)

If segment sufficiently short

P(sounds|segment)

can be modelled with standard probability distributions

$$\phi(o, s_a) = P(o|s_a)$$

Usually Gaussian or Gaussian Mixture but also discrete distributions

Global Probabilities (utterance)

Problem: How do we combine the different P(sounds|segment) to form P(sounds|words)?

Answer: Hidden Markov Model (HMM)

State to output probability model

- Discrete HMMs (DHMMs)
 - vector quantisation
- Continuous HMMs
 - Single Gaussian $\phi_j(x_n) = N(x_n | \mu_j, \Sigma_j)$
 - Gaussian Mixture

Semi-continuous HMMs (SCHMMs)

Discrete HMMs

- quantise feature vectors
- observation: sequence of discrete symbols
- $\phi_j(x_n)$ simple discrete probability distribution
- problem: quantisation error

Discrete HMMs: learn $\phi_j(x_n)$ Remember that

$$\gamma_n(i,j) = P(z_{n-1} = s_i, z_n = s_j | X, \theta)$$

then

$$\xi_n(j) = P(z_n = s_j | X, \theta) = \sum_{i=1}^M \gamma_n(i, j)$$

Update rule:

$$\phi_j(x_n = k) = \frac{E[x_n = k, z_n = s_j]}{E[z_n = s_j]} = \frac{\sum_{n:(x_n = k)} \xi_n(j)}{\sum_{n=1}^N \xi_n(j)}$$

HMMs with Gaussian Emission Probability

$$\phi_j(\mathbf{x}_n) = N(\mathbf{x}_n | \mu_j, \Sigma_j)$$

Update rules:

$$\mu_{j} = \frac{\sum_{n=1}^{N} \xi_{n}(j) x_{n}}{\sum_{n=1}^{N} \xi_{n}(j)}$$

$$\Sigma_{j} = \frac{\sum_{n=1}^{N} \xi_{n}(j) (x_{n} - \mu_{j}) (x_{n} - \mu_{j})^{T}}{\sum_{n=1}^{N} \xi_{n}(j)}$$

HMMs with Mixture Emission Probability

Often the Emission probability is modelled as a Mixture of Gaussians

$$\phi_j(x_n) = \sum_{k=1}^{K} w_{jk} N(x_n | \mu_{jk}, \Sigma_{jk})$$

$$\sum_{k=1}^{M} w_{jk} = 1$$

HMMs with Mixture Emission Probability

Emission:

$$p(x_n|z_n, m_n) = \mathcal{N}(x_n; \mu_{z_n, m_n}, \Sigma_{z_n, m_n})$$

$$p(m_n|z_n) = W(m_n, z_n)$$

Semi-Continuous HMMs

- All Gaussian distributions in a pool of pdfs
- ► each φ_j(x_n) is a discrete probability distribution over the pool of Gaussians
- similar to quantisation, but probabilistic
- used for sharing parameters

Modelling Coarticulation

Example peat /pirt/ vs wheel /wirl/

Modelling Coarticulation

Context dependent models (CD-HMMs)

- Duplicate each phoneme model depending on left and right context:
- ▶ from "a" monophone model
- ▶ to "d-a+f", "d-a+g", "l-a+s"... triphone models
- If there are N = 50 phonemes in the language, there are $N^3 = 125000$ potential triphones
- many of them are not exploited by the language

Amount of parameters

Example:

- a large vocabulary recogniser may have 60000 triphone models
- each model has 3 states
- each state may have 32 mixture components with 1 + 39 × 2 parameters each (weight, means, variances): 39 × 32 × 2 + 32 = 2528

Totally it is $60000 \times 3 \times 2528 = 455$ million parameters!

Similar Coarticulation

/riː/ vs /wiː/

Tying to reduce complexity

Example: similar triphones d-a+m and t-a+m

- same right context, similar left context
- 3rd state is expected to be very similar
- 2nd state may also be similar

States (and their parameters) can be shared between models

- + reduce complexity
- + more data to estimate each parameter
- fine detail may be lost

Tying to reduce complexity

Example: similar triphones d-a+m and t-a+m

- same right context, similar left context
- 3rd state is expected to be very similar
- 2nd state may also be similar

States (and their parameters) can be shared between models

- + reduce complexity
- + more data to estimate each parameter
- fine detail may be lost

done with CART tree methodology

HMM Limitations: Duration modelling

- $P(d_i = n) = a_{ii}^n (1 a_{ii})$
- Several solutions proposed, but modest improvements

HMM Limitations: First Order Assumption

HMM Limitations: First Order Assumption

but: increasing order gives modest improvements

HMM Limitations: Conditional Independence Assumption

HMM Limitations: Conditional Independence Assumption

use dynamic features!

Dynamic Features

Concatenate static MFCCs (or LPCs) to Δ and $\Delta\Delta$ vectors.

 Δ_n computed as weighted sum of $d_k(n)$

$$\Delta_n = \frac{\sum_{k=1}^K w_k d_k(n)}{\sum_{k=1}^K w_k}$$

 $d_k(n)$: finite differences centered around *n* with interval 2k:

$$d_k(n) = \frac{c_{n+k}-c_{n-k}}{2k}$$

Similarly for $\Delta \Delta_n$

Dynamic Features: Common values

- In HTK $w_k = 2k^2$
- ▶ Usually *k* goes from 1 to 3
- ► to compute static+∆+∆∆ we need 13 consecutive static vectors (around 130 msec).

HMM Limitations: Conditional Independence Assumption

Autoregressive HMM [1]

M. Shannon and W. Byrne. "Autoregressive HMMs for speech synthesis". In: Proc. Interspeech. Brighton, U.K., 2009

HMM Limitations: Conditional Independence Assumption

Autoregressive HMM [1]

Also interesting results with Time Delay Neural Networks (TDNN)

M. Shannon and W. Byrne. "Autoregressive HMMs for speech synthesis". In: Proc. Interspeech. Brighton, U.K., 2009

HMMs: Practical Issues

- Initialisation
- Training Criteria
- Probability Representations

Initialisation

Important in order to reach a high local maximum

- Discrete HMM
 - Initial zero probability remains zero
 - Uniform distribution works reasonably well
- Continuous HMM methods
 - k-means clustering
 - Proceed from discrete HMM to semi-continuous to continuous
 - Start training single Gaussian models.
- Use previously segmented data or "flat start" (equal distribution for all states in the training data)

Training Criteria

Maximum Likelihood Estimation (MLE)

- Sensitive to inaccurate Markov assumptions
- Maximises model likelihood rather than discrimination between models
- Minimum Classification Error (MCE) and Maximum Mutual Information Estimation (MMIE) might work better
- Maximum A Posteriori (MAP) if we have prior knowledge
 - for adaptation and small training data

Probability Representations

Problem: the probabilities become very small (underflow problem)

- Viterbi decoding (only multiplication): use logarithm
- Forward-backward (multiplication and addition): difficult
- Solution 1: scale by $\left(\sum_{i=1}^{M} \alpha_n(i)\right)^{-1}$
- Solution 2: use logarithm and look-up table to speed up log(p₁ + p₂)

Outline

Acoustic Models

Limitations Practical Issues

Lexical Models

Evaluation

Components of ASR System

Lexical Models

- in general specify sequence of phoneme for each word
- example:

"dictionary" IPA X-SAMPA UK: /dık∫ən(ə)ıi/ /dlkS@n(@)ri/ USA: /dık∫ənεıi/ /dlkS@nEri/

- expensive resources
- include multiple pronunciations
- phonological rules (assimilation, deletion)

Pronunciation Network

Assimilation

did you /dıdʒjə/ set you /sɛt∫ 3/ last year /læst∫iːɹ/ because you've /biːkəʒuːv/

Deletion

find him /faınım/ around this /əɹaʊnıs/ let me in /lεm iːn/

Out of Vocabulary Words

- Proper names often not in lexicon
- derive pronunciation automatically
- English has very complex grapheme-to-phoneme rules
- attempts to derive pronunciation from speech recordings

Outline

Acoustic Models

Limitations Practical Issues

Lexical Models

Evaluation

Components of ASR System

ASR Evaluation

- recognition results are sequences of words
- evaluation is non-trivial
- need to realign the recognised sequence to the transcription
- example:
 - ref: I really wanted to see you rec: I wanted badly to meet you
- possible to use detailed time alignment
- usually only symbolic level is used
- dynamic programming

Word Accuracy and Word Error Rate (WER)

$$A = 100 \frac{N - S - D - I}{N}$$

Where

- ► N: total number of reference words
- ► S: substitutions
- D: deletions
- I: insertions

WER = 100 - A

Word Accuracy: example

Ref/Rec	I	wanted	badly	to	meet	you
Ι	corr					
really	del					
wanted		corr				
to			ins	corr		
see					sub	
you						corr

6 words, 1 substitution, 1 insertion, 1 deletion

$$A = 100 \frac{6 - 1 - 1 - 1}{6} = 50\%$$

requires dynamic programming

Effects of Sampling Rate on WER

Sampling Rate	Relative Error Reduction
(kHz)	(%)
8	baseline
11	+10
16	+10
22	+0

(from Huang, Acero and Hon)

Effects of Feaures on WER

Feature Set	Relative Error	
	Reduction (%)	
13th order LPC cepstrum	baseline	
13th order MFCC	+10	
16th order MFCC	+0	
with Δ and $\Delta\Delta$	+20	
with $\Delta\Delta\Delta$	+0	

(from Huang, Acero and Hon)

Effect of Modelling Context

Units	Relative Error		
	Reduction (%)		
Context-independent phone	baseline		
Context-dependent phone	+25		
Clustered triphone	+15		
Senone	+24		

(from Huang, Acero and Hon)