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A probabilistic perspective: Bayes’ rule

P(words|sounds) =
P(sounds|words)P(words)

P(sounds)

I P(sounds|words) can be estimated from
training data and transcriptions

I P(words): a priori probability of the words
(Language Model)

I P(sounds): a priori probability of the sounds
(constant, can be ignored)

4 / 45



Probabilistic Modelling
Problem: How do we model P(sounds|words)?

File: sx352.WAV   Page: 1 of 1   Printed: Mon Dec 05 09:01:39
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Every feature vector (observation at time t) is a
continuous stochastic variable (e.g. MFCC)
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Stationarity
I we need to model short segments independently
I the fundamental unit can not be the word, but

must be shorter
I usually we model three segments for each

phoneme
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Local probabilities (frame-wise)

If segment sufficiently short

P(sounds|segment)

can be modelled with standard probability
distributions

φ(o, sa) = P(o|sa)

Usually Gaussian or Gaussian Mixture but also
discrete distributions
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Global Probabilities (utterance)

Problem: How do we combine the different
P(sounds|segment) to form P(sounds|words)?

Answer: Hidden Markov Model (HMM)

w1 w2 w3

w

ao1 ao2 ao3

ao

sh1 sh2 sh3

sh

wash
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State to output probability model

I Discrete HMMs (DHMMs)
I vector quantisation

I Continuous HMMs
I Single Gaussian φj(xn) = N(xn|µj ,Σj)
I Gaussian Mixture

I Semi-continuous HMMs (SCHMMs)
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Discrete HMMs

I quantise feature vectors

I observation: sequence of discrete symbols

I φj(xn) simple discrete probability distribution

I problem: quantisation error
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Discrete HMMs: learn φj(xn)
Remember that

γn(i , j) = P(zn−1 = si , zn = sj |X , θ)

then

ξn(j) = P(zn = sj |X , θ) =
M∑
i=1

γn(i , j)

Update rule:

φj(xn = k) =
E [xn = k , zn = sj ]

E [zn = sj ]
=

∑
n:(xn=k) ξn(j)∑N

n=1 ξn(j)
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HMMs with Gaussian Emission Probability

φj(xn) = N(xn|µj ,Σj)

Update rules:

µj =

∑N
n=1 ξn(j)xn∑N
n=1 ξn(j)

Σj =

∑N
n=1 ξn(j) (xn − µj) (xn − µj)T∑N

n=1 ξn(j)
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HMMs with Mixture Emission Probability

Often the Emission probability is modelled as a
Mixture of Gaussians

φj(xn) =
K∑

k=1

wjkN(xn|µjk ,Σjk)

M∑
k=1

wjk = 1
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HMMs with Mixture Emission Probability

z1 z2 . . . zn−1 zn . . .

m1 m2 mn−1 mn

x1 x2 xn−1 xn

Emission:

p(xn|zn,mn) = N (xn;µzn,mn
,Σzn,mn

)

p(mn|zn) = W (mn, zn)

14 / 45



Semi-Continuous HMMs

I All Gaussian distributions in a pool of pdfs

I each φj(xn) is a discrete probability distribution
over the pool of Gaussians

I similar to quantisation, but probabilistic

I used for sharing parameters
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Modelling Coarticulation

Example peat /pi:t/ vs wheel /wi:l/
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Modelling Coarticulation

Context dependent models (CD-HMMs)

I Duplicate each phoneme model depending on
left and right context:

I from “a” monophone model

I to “d−a+f”, “d−a+g”, “l−a+s”. . . triphone
models

I If there are N = 50 phonemes in the language,
there are N3 = 125000 potential triphones

I many of them are not exploited by the language
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Amount of parameters

Example:

I a large vocabulary recogniser may have 60000
triphone models

I each model has 3 states

I each state may have 32 mixture components
with 1 + 39× 2 parameters each (weight,
means, variances): 39× 32× 2 + 32 = 2528

Totally it is 60000× 3× 2528 = 455 million
parameters!
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Similar Coarticulation

/ri:/ vs /wi:/
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Tying to reduce complexity

Example: similar triphones d−a+m and t−a+m

I same right context, similar left context

I 3rd state is expected to be very similar

I 2nd state may also be similar

States (and their parameters) can be shared
between models

+ reduce complexity

+ more data to estimate each parameter

– fine detail may be lost

done with CART tree methodology
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HMM Limitations: Duration modelling

I P(di = n) = anii(1− aii)

I Several solutions proposed, but modest
improvements
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HMM Limitations: First Order
Assumption

. . . zn−1 zn zn+1 . . .

. . . xn−1 xn xn+1 . . .

but: increasing order gives modest improvements
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HMM Limitations: Conditional
Independence Assumption
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use dynamic features!
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Dynamic Features
Concatenate static MFCCs (or LPCs) to ∆ and ∆∆
vectors.
∆n computed as weighted sum of dk(n)

∆n =

∑K
k=1 wkdk(n)∑K

k=1 wk

dk(n): finite differences centered around n with
interval 2k :

dk(n) =
cn+k − cn−k

2k

Similarly for ∆∆n
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Dynamic Features: Common values
I In HTK wk = 2k2

I Usually k goes from 1 to 3
I to compute static+∆+∆∆ we need 13

consecutive static vectors (around 130 msec).

static

∆

∆∆

static+∆+∆∆
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HMM Limitations: Conditional
Independence Assumption

Autoregressive HMM [1]

. . . zn−1 zn zn+1 . . .

. . . xn−1 xn xn+1 . . .

Also interesting results with Time Delay Neural
Networks (TDNN)

[1] M. Shannon and W. Byrne. “Autoregressive HMMs for speech synthesis”. In: Proc. Interspeech. Brighton,
U.K., 2009
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HMMs: Practical Issues

I Initialisation

I Training Criteria

I Probability Representations

27 / 45



Initialisation

Important in order to reach a high local maximum
I Discrete HMM

I Initial zero probability remains zero
I Uniform distribution works reasonably well

I Continuous HMM methods
I k-means clustering
I Proceed from discrete HMM to semi-continuous to

continuous
I Start training single Gaussian models.

I Use previously segmented data or “flat start”
(equal distribution for all states in the training
data)
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Training Criteria

I Maximum Likelihood Estimation (MLE)
I Sensitive to inaccurate Markov assumptions
I Maximises model likelihood rather than

discrimination between models

I Minimum Classification Error (MCE) and
Maximum Mutual Information Estimation
(MMIE) might work better

I Maximum A Posteriori (MAP) if we have prior
knowledge

I for adaptation and small training data
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Probability Representations

Problem: the probabilities become very small
(underflow problem)

I Viterbi decoding (only multiplication): use
logarithm

I Forward-backward (multiplication and
addition): difficult

I Solution 1: scale by
(∑M

i=1 αn(i)
)−1

I Solution 2: use logarithm and look-up table to
speed up log(p1 + p2)
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Lexical Models

I in general specify sequence of phoneme for
each word

I example:

“dictionary” IPA X-SAMPA
UK: /d I k S @ n (@) ô i/ /d I k S @ n (@) r i/

USA: /d I k S @ n E ô i/ /d I k S @ n E r i/

I expensive resources

I include multiple pronunciations

I phonological rules (assimilation, deletion)
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Pronunciation Network

Example: tomato

/t/

/@/

/oU/

/m/

/A/

/eI/

/R/

/t/

/oU/
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0.8

0.8

0.2
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Assimilation

did you /d I dZ j @/
set you /s E tS 3/

last year /l æ s tS i: ô/
because you’ve /b i: k @ Z u: v/
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Deletion

find him /f a I n I m/
around this /@ ô aU n I s/

let me in /l E m i: n/
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Out of Vocabulary Words

I Proper names often not in lexicon

I derive pronunciation automatically

I English has very complex
grapheme-to-phoneme rules

I attempts to derive pronunciation from speech
recordings
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ASR Evaluation

I recognition results are sequences of words

I evaluation is non-trivial

I need to realign the recognised sequence to the
transcription

I example:

ref: I really wanted to see you
rec: I wanted badly to meet you

I possible to use detailed time alignment

I usually only symbolic level is used

I dynamic programming
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Word Accuracy and Word Error Rate
(WER)

A = 100
N − S − D − I

N
Where

I N : total number of reference words

I S : substitutions

I D: deletions

I I : insertions

WER = 100− A
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Word Accuracy: example

Ref/Rec I wanted badly to meet you

I corr
really del
wanted corr
to ins corr
see sub
you corr

6 words, 1 substitution, 1 insertion, 1 deletion

A = 100
6− 1− 1− 1

6
= 50%

requires dynamic programming
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Effects of Sampling Rate on WER

Sampling Rate Relative Error Reduction
(kHz) (%)

8 baseline
11 +10
16 +10
22 +0

(from Huang, Acero and Hon)
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Effects of Feaures on WER

Feature Set Relative Error
Reduction (%)

13th order LPC cepstrum baseline
13th order MFCC +10
16th order MFCC +0
with ∆ and ∆∆ +20
with ∆∆∆ +0

(from Huang, Acero and Hon)
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Effect of Modelling Context

Units Relative Error
Reduction (%)

Context-independent phone baseline
Context-dependent phone +25
Clustered triphone +15
Senone +24

(from Huang, Acero and Hon)
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