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A probabilistic perspective: Bayes' rule

P(sounds|words) P(words)

P(Words|sound5) = P(soundS)

» P(sounds|words) can be estimated from
training data and transcriptions

» P(words): a priori probability of the words
(Language Model)

» P(sounds): a priori probability of the sounds
(constant, can be ignored)
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Probabilistic Modelling

Problem: How do we model P(sounds|words)?
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Probabilistic Modelling

Problem: How do we model P(sounds|words)?

Every feature vector (observation at time t) is a
continuous stochastic variable (e.g. MFCC)

S
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Stationarity

» we need to model short segments independently
» the fundamental unit can not be the word, but

must be shorter

» usually we model three segments for each

phoneme
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Local probabilities (frame-wise)

If segment sufficiently short
P(sounds|segment)

can be modelled with standard probability
distributions

®(0,s,) = P(ols,)

Usually Gaussian or Gaussian Mixture but also
discrete distributions



Global Probabilities (utterance)

Problem: How do we combine the different
P(sounds|segment) to form P(sounds|words)?

Answer: Hidden Markov Model HI\/IM
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State to output probability model

» Discrete HMMs (DHMMs)
» vector quantisation

» Continuous HMMs
» Single Gaussian ¢;(x,) = N(x,|p;, X))
» Gaussian Mixture

» Semi-continuous HMMs (SCHMMs)
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Discrete HMMs

quantise feature vectors

v

observation: sequence of discrete symbols

v

v

¢j(xn) simple discrete probability distribution

v

problem: quantisation error
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Discrete HMMs: learn ¢;(x,)

Remember that

’Yn(lhl) = P(anl =5,Zp = SJ‘X,Q)

then
M
fn(_/) = P(Zn = 5j|X7 9) = Z’}/n(ia.j)
i=1
Update rule:
E Xy = k,Zn =S Zn: Xp= 5”(./)
¢J(Xn — k) — [ J] _ ( k)

E[Z,, = Sj] B ZnN:1 fn(./)
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HMMs with Gaussian Emission Probability

6j(xn) = N(xal1j, %))
Update rules:

L = Zrl:/:1 En(J)Xn
J ZnNzl gn(_/)

s Zaa&l) o =) (o = )"
J o1 éali)




HMMs with Mixture Emission Probability

Often the Emission probability is modelled as a
Mixture of Gaussians

K
(%) = > wiN (xal e, Zi)
k=1

M
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HMMs with Mixture Emission Probability

5

Emission:

N(Xny /'LZn,m,ﬂ ZZn,rnn)
W(mna Zn)

p(Xn|zn, mp)
p(m,,\z,,)



Semi-Continuous HMMs

» All Gaussian distributions in a pool of pdfs

» each ¢j(x,) is a discrete probability distribution
over the pool of Gaussians

» similar to quantisation, but probabilistic
» used for sharing parameters
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Modelling Coarticulation

Example peat /pitt/ vs wheel /witl/
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Modelling Coarticulation

Context dependent models (CD-HMMs)

»

Duplicate each phoneme model depending on
left and right context:

from “a” monophone model
to “d—a+f", “d—a+g", “l—a+s"... triphone
models

If there are N = 50 phonemes in the language,
there are N3 = 125000 potential triphones

many of them are not exploited by the language
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Amount of parameters

Example:

» a large vocabulary recogniser may have 60000
triphone models

» each model has 3 states

» each state may have 32 mixture components
with 1 + 39 X 2 parameters each (weight,
means, variances): 39 x 32 x 2 + 32 = 2528

Totally it is 60000 x 3 x 2528 = 455 million
parameters!
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Similar Coarticulation

/rit/ vs [wiz/
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Tying to reduce complexity

Example: similar triphones d—a+m and t—a+m
» same right context, similar left context
» 3rd state is expected to be very similar
» 2nd state may also be similar

States (and their parameters) can be shared
between models

+ reduce complexity
+ more data to estimate each parameter
— fine detail may be lost
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Tying to reduce complexity

Example: similar triphones d—a+m and t—a+m
» same right context, similar left context
» 3rd state is expected to be very similar
» 2nd state may also be similar

States (and their parameters) can be shared
between models

+ reduce complexity
+ more data to estimate each parameter
— fine detail may be lost

done with CART tree methodology
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HMM Limitations: Duration modelling

> P(d, = n) = a,’}(l — a,-,-)
» Several solutions proposed, but modest
improvements

21 /45



HMM Limitations: First Order
Assumption




HMM Limitations: First Order
Assumption

but: increasing order gives modest improvements
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HMM Limitations: Conditional
Independence Assumption

DS



HMM Limitations: Conditional
Independence Assumption

DS
0 e e .

use dynamic features!



Dynamic Features

Concatenate static MFCCs (or LPCs) to A and AA
vectors.

A, computed as weighted sum of dk(n)
A _ > 1 Wrd(n)
Zszl Wk

di(n): finite differences centered around n with
interval 2k:

Crik — Cpo
h(n) = =g

Similarly for AA,
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Dynamic Features: Common values

» In HTK wy = 2k?
» Usually k goes from 1 to 3
» to compute static+ A+AA we need 13

consecutive static vectors (around 130 msec).

AA
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HMM Limitations: Conditional

Independence Assumption
Autoregressive HMM [1]

Hﬁ)ﬁ
—@

RS

[1] M. Shannon an d W. Byrne. “Autoregressive HMMs for speech synthesis”. In: Proc. Interspeech. Brighton,
U.K., 2009
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HMM Limitations: Conditional

Independence Assumption
Autoregressive HMM [1]

_,61)_,@_,@_,

Also interesting results with Time Delay Neural
Networks (TDNN)

[1] M. Shannon an d W. Byrne. “Autoregressive HMMs for speech synthesis”. In: Proc. Interspeech. Brighton,

U.K., 2009
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HMMs: Practical Issues

» Initialisation
» Training Criteria
» Probability Representations
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Initialisation

Important in order to reach a high local maximum
» Discrete HMM

» Initial zero probability remains zero
» Uniform distribution works reasonably well

» Continuous HMM methods
» k-means clustering
» Proceed from discrete HMM to semi-continuous to
continuous
» Start training single Gaussian models.
» Use previously segmented data or “flat start”
(equal distribution for all states in the training
data)
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Training Criteria

» Maximum Likelihood Estimation (MLE)

» Sensitive to inaccurate Markov assumptions
» Maximises model likelihood rather than
discrimination between models

» Minimum Classification Error (MCE) and
Maximum Mutual Information Estimation
(MMIE) might work better

» Maximum A Posteriori (MAP) if we have prior
knowledge

» for adaptation and small training data
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Probability Representations

Problem: the probabilities become very small
(underflow problem)

» Viterbi decoding (only multiplication): use
logarithm

» Forward-backward (multiplication and
addition): difficult
-1
» Solution 1: scale by (Z,Ail oz,,(i))
» Solution 2: use logarithm and look-up table to
speed up log(p1 + p2)
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Lexical Models

» in general specify sequence of phoneme for
each word

» example:
“dictionary” IPA X-SAMPA
UK: /dikfan(s)si/ /dI1kS@n(Q)ri/
USA: /dikfeneui/ /dIkS@nEri/
» expensive resources

» include multiple pronunciations
» phonological rules (assimilation, deletion)
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Pronunciation Network

Example: tomato
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Assimilation

did you /didzja/
set you /setf3/
last year /l & stfi: 4/
because you've /bir ka3 ur v/



Deletion

find him /fainim/
around this /s iavnis/
let mein /lemi:n/



Out of Vocabulary Words

Proper names often not in lexicon

v

v

derive pronunciation automatically

English has very complex
grapheme-to-phoneme rules

attempts to derive pronunciation from speech
recordings

v

v
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ASR Evaluation

» recognition results are sequences of words
» evaluation is non-trivial

» need to realign the recognised sequence to the
transcription

» example:

ref: | really wanted to see you
rec: | wanted badly to meet you

» possible to use detailed time alignment
» usually only symbolic level is used
» dynamic programming
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Word Accuracy and Word Error Rate
(WER)

N—-—S—-—D-—1

A=1
00 N

Where
» N: total number of reference words
» S: substitutions
» D: deletions

» [: insertions
WER =100 — A
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Word Accuracy: example

Ref/Rec || | |wanted | badly| to | meet | you

corr

really

del

wanted

corr

to

Ins

corr

see

sub

you

6 words, 1 substitution, 1 insertion, 1 deletion

6-1—-1-1

A =100

requires dynamic programming

= 50%

corr
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Effects of Sampling Rate on WER

Sampling Rate Relative Error Reduction

(kHz) (%)
38 baseline
11 +10
16 +10
22 +0

(from Huang, Acero and Hon)
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Effects of Feaures on WER

Feature Set Relative Error
Reduction (%)

13th order LPC cepstrum baseline

13th order MFCC +10
16th order MFCC +0
with A and AA +20
with AAA +0

(from Huang, Acero and Hon)
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Effect of Modelling Context

Units Relative Error
Reduction (%)
Context-independent phone baseline
Context-dependent phone +25
Clustered triphone +15
Senone +24

(from Huang, Acero and Hon)

45 /45



	Acoustic Models
	Limitations
	Practical Issues

	Lexical Models
	Evaluation

