DD2448 Foundations of Cryptography Lecture 8

Douglas Wikström KTH Royal Institute of Technology dog@kth.se

March 11, 2016

DD2448 Foundations of Cryptography

March 11, 2016

ROM-RSA

DD2448 Foundations of Cryptography

Definition. The RSA assumption states that if:

- 1. N = pq factors into two randomly chosen primes p and q of the same bit-size,
- 2. e is in $\mathbb{Z}^*_{\phi(N)}$,
- 3. *m* is randomly chosen in \mathbb{Z}_N^* ,

then for every polynomial time algorithm A

 $\Pr[A(N, e, m^e \mod N) = m]$

is negligible.

Semantically Secure ROM-RSA (1/2)

Suppose that $f : \{0,1\}^n \to \{0,1\}^n$ is a randomly chosen function (a random oracle).

- Key Generation. Choose a random RSA key pair ((N, e), (p, q, d)), with $\log_2 N = n$.
- **Encryption.** Encrypt a plaintext $m \in \{0,1\}^n$ by choosing $r \in \mathbb{Z}_N^*$ randomly and computing

$$(u,v) = (r^e \mod N, f(r) \oplus m)$$
.

Decryption. Decrypt a ciphertext (u, v) by

$$m = v \oplus f(u^d \mod N)$$
 .

Semantically Secure RSA in the ROM (2/2)

- We increase the ciphertext size by a factor of two.
- Our analysis is in the random oracle model, which is unsound!

Semantically Secure RSA in the ROM (2/2)

- We increase the ciphertext size by a factor of two.
- Our analysis is in the random oracle model, which is unsound!

Solutions.

 Using a "optimal" padding the first problem can be reduced. See standard OAEP+.

Semantically Secure RSA in the ROM (2/2)

- We increase the ciphertext size by a factor of two.
- Our analysis is in the random oracle model, which is unsound!

Solutions.

- Using a "optimal" padding the first problem can be reduced. See standard OAEP+.
- Using a scheme with much lower rate, the second problem can be removed.

Rabin

DD2448 Foundations of Cryptography

Key Generation.

- Choose *n*-bit primes *p* and *q* such that *p*, *q* = 3 mod 4 randomly and define *N* = *pq*.
- ► Output the key pair (N, (p, q)), where N is the public key and (p, q) is the secret key.

Encryption. Encrypt a plaintext *m* by computing

$$c=m^2 mod N$$
 .

Decryption. Decrypt a ciphertext *c* by computing

 $m=\sqrt{c} \mod N$.

Encryption. Encrypt a plaintext *m* by computing

$$c=m^2 mod N$$
 .

Decryption. Decrypt a ciphertext *c* by computing

 $m=\sqrt{c} \mod N$.

There are **four** roots, so which one should be used?

Rabin's Cryptosystem (3/3)

Suppose y is a quadratic residue modulo p.

$$\left(\pm y^{(p+1)/4}\right)^2 = y^{(p+1)/2} \mod p$$
$$= y^{(p-1)/2}y \mod p$$
$$= \left(\frac{y}{p}\right)y$$
$$= y \mod p$$

In Rabin's cryptosystem:

- Find roots for $y_p = y \mod p$ and $y_q = y \mod q$.
- Combine roots to get the four roots modulo N. Choose the "right" root and output the plaintext.

Theorem. Breaking Rabin's cryptosystem is equivalent to factoring.

Idea.

- 1. Choose random element r.
- 2. Hand $r^2 \mod N$ to adversary.
- 3. Consider outputs r' from the adversary such that $(r')^2 = r^2 \mod N$. Then $r' \neq \pm r \mod N$, with probability 1/2, in which case gcd(r' r, N) gives a factor of N.

A Goldwasser-Micali Variant of Rabin

Theorem [CG98]. If factoring is hard and r is a random quadratic residue modulo N, then for every polynomial time algorithm A

 $\Pr[A(N, r^2 \mod N) = \mathsf{lsb}(r)]$

is negligible.

▶ **Encryption.** Encrypt a plaintext *m* ∈ {0,1} by choosing a random quadratic residue *r* modulo *N* and computing

$$(u,v) = (r^2 \mod N, \operatorname{lsb}(r) \oplus m)$$
.

• **Decryption.** Decrypt a ciphertext (u, v) by

 $m = v \oplus \operatorname{lsb}(\sqrt{u})$ where \sqrt{u} is a quadratic residue .

Diffie-Hellman

DD2448 Foundations of Cryptography

Diffie and Hellman asked themselves:

How can two parties efficiently agree on a secret key using only **public** communication?

Construction.

Let G be a cyclic group of order q with generator g.

- Alice picks a ∈ Z_q randomly, computes y_a = g^a and hands y_a to Bob.
 - Bob picks b ∈ Z_q randomly, computes y_b = g^b and hands y_b to Alice.
- Alice computes k = y_b^a.
 Bob computes k = y_b^b.
- 3. The joint secret key is k.

Problems.

- Susceptible to man-in-the-middle attack without authentication.
- ► How do we map a random element k ∈ G to a random symmetric key in {0,1}ⁿ?

The El Gamal Cryptosystem (1/2)

Definition. Let G be a cyclic group of order q with generator g.

► The key generation algorithm chooses a random element x ∈ Z_q as the private key and defines the public key as

$$y = g^x$$
.

The encryption algorithm takes a message m ∈ G and the public key y, chooses r ∈ Z_a, and outputs the pair

$$(u,v) = \mathsf{E}_y(m,r) = (g^r, y^r m)$$
.

The decryption algorithm takes a ciphertext (u, v) and the secret key and outputs

$$m=\mathsf{D}_x(u,v)=vu^{-x}$$

- ► El Gamal is essentially Diffie-Hellman + OTP.
- Homomorphic property (with public key y)

$$E_y(m_0, r_0)E_y(m_1, r_1) = E_y(m_0m_1, r_0 + r_1)$$
.

This property is very important in the construction of cryptographic protocols!

Definition. Let G be a cyclic group of order q and let g be a generator G. The **discrete logarithm** of $y \in G$ in the basis g (written $\log_g y$) is defined as the unique $x \in \{0, 1, \ldots, q-1\}$ such that

$$y = g^x$$
.

Compare with a "normal" logarithm! $(\ln y = x \text{ iff } y = e^x)$

Example. 7 is a generator of \mathbb{Z}_{12} additively, since gcd(7, 12) = 1. What is $\log_7 3$?

Example. 7 is a generator of \mathbb{Z}_{12} additively, since gcd(7, 12) = 1. What is $\log_7 3$? $(9 \cdot 7 = 63 = 3 \mod 12$, so $\log_7 3 = 9)$ **Example.** 7 is a generator of \mathbb{Z}_{12} additively, since gcd(7, 12) = 1. What is $\log_7 3$? $(9 \cdot 7 = 63 = 3 \mod 12$, so $\log_7 3 = 9$)

Example. 7 is a generator of \mathbb{Z}_{13}^* .

What is log₇ 9?

Example. 7 is a generator of \mathbb{Z}_{12} additively, since gcd(7, 12) = 1. What is $\log_7 3$? $(9 \cdot 7 = 63 = 3 \mod 12$, so $\log_7 3 = 9$)

Example. 7 is a generator of \mathbb{Z}_{13}^* .

What is $\log_7 9$? (7⁴ = 9 mod 13, so $\log_7 9 = 4$)

Let G_{q_n} be a cyclic group of prime order q_n such that $\lfloor \log_2 q_n \rfloor = n$ for $n = 2, 3, 4, \ldots$, and denote the family $\{G_{q_n}\}_{n \in \mathbb{N}}$ by G.

Definition. The **Discrete Logarithm (DL)** Assumption in G states that if generators g_n and y_n of G_{q_n} are randomly chosen, then for every polynomial time algorithm A

$$\Pr\left[A(g_n, y_n) = \log_{g_n} y_n\right]$$

is negligible.

Let G_{q_n} be a cyclic group of prime order q_n such that $\lfloor \log_2 q_n \rfloor = n$ for $n = 2, 3, 4, \ldots$, and denote the family $\{G_{q_n}\}_{n \in \mathbb{N}}$ by G.

Definition. The **Discrete Logarithm (DL) Assumption** in G states that if generators g and y of G are randomly chosen, then for every polynomial time algorithm A

$$\Pr\left[A(g,y) = \log_g y\right]$$

is negligible.

We usually remove the indices from our notation!

Definition. Let g be a generator of G. The **Diffie-Hellman** (DH) Assumption in G states that if $a, b \in \mathbb{Z}_q$ are randomly chosen, then for every polynomial time algorithm A

$$\Pr\left[A(g^a,g^b)=g^{ab}\right]$$

is negligible.

Definition. Let g be a generator of G. The **Decision Diffie-Hellman (DDH) Assumption** in G states that if $a, b, c \in \mathbb{Z}_q$ are randomly chosen, then for every polynomial time algorithm A

$$\left| \Pr\left[A(g^a, g^b, g^{ab}) = 1 \right] - \Pr\left[A(g^a, g^b, g^c) = 1 \right] \right|$$

is negligible.

- Computing discrete logarithms is at least as hard as computing a Diffie-Hellman element g^{ab} from g^a and g^b.
- Computing a Diffie-Hellman element g^{ab} from g^a and g^b is at least as hard as distinguishing a Diffie-Hellman triple (g^a, g^b, g^{ab}) from a random triple (g^a, g^b, g^c).
- In most groups where the DL assumption is conjectured, DH and DDH assumptions are conjectured as well.
- There exists special elliptic curves where DDH problem is easy, but DH assumption is conjectured!

- Finding the secret key is equivalent to DL problem.
- Finding the plaintext from the ciphertext and the public key and is equivalent to DH problem.
- The semantic security of El Gamal is equivalent to DDH problem.

Let G be a cyclic group of order q and g a generator. We wish to compute $\log_g y$.

- **•** Brute Force. O(q)
- **Shanks.** Time and **Space** $O(\sqrt{q})$.
 - 1. Set $z = g^m$ (think of m as $m = \sqrt{q}$).
 - 2. Compute z^i for $0 \le i \le q/m$.
 - 3. Find $0 \le j \le m$ and $0 \le i \le q/m$ such that $yg^j = z^i$ and output x = mi j.

Lemma. Let q_0, \ldots, q_k be randomly chosen in a set S. Then

1. the probability that $q_i = q_j$ for some $i \neq j$ is approximately $1 - e^{-\frac{k^2}{2s}}$, where s = |S|, and 2. with $k \approx \sqrt{-2s \ln(1-\delta)}$ we have a collision-probability of δ .

Proof.

$$\left(\frac{s-1}{s}\right)\left(\frac{s-2}{s}\right)\cdot\ldots\cdot\left(\frac{s-k}{s}\right)\approx\prod_{i=1}^{k}e^{-\frac{i}{s}}\approx e^{-\frac{k^2}{2s}}$$