KTH ROYAL INSTITUTE OF TECHNOLOGY

KTH

Lecture 3: Outline

- ▶ Ch. 2: Unitary equiv, QR factorization, Schur's thm, Cayley-H., Normal matrices, Spectral thm, Singular value decomp.
- ▶ Ch. 3: Canonical forms: Jordan/Matrix factorizations

Magnus Jansson/Bhavani Shankar/Joakim Jaldén/Mats Bengtsson

Unitary matrices

- ► A set of vectors $\{x_i\} \in \mathbb{C}^n$ are called
	- ► **orthogonal** if $x_i^* x_j = 0$, $\forall i \neq j$ and
	- ► orthonormal if they are orthogonal and $x_i^*x_i = 1, \forall i$.
- A matrix $U \in M_n$ is unitary if $U^*U = I$.
- A matrix $U \in M_n(\mathbf{R})$ is real orthogonal if $U^T U = I$.
- ▶ (A matrix $U \in M_n$ is **orthogonal** if $UU^T = I$.)
- \blacktriangleright If U, V are unitary then UV is unitary. ▶ Unitary matrices form a group under multiplication.

 $2/26$

Unitary matrices cont'd

The following are equiv.

- 1. U is unitary
- 2. U is nonsingular and $U^{-1} = U^*$
- 3. $UU^* = I$
- 4. U∗ is unitary
- 5. the columns of U are orthonormal
- 6. the rows of U are orthonormal
- 7. for all $x \in \mathbb{C}^n$, the Euclidean length of $y = Ux$ equals that of x.

Def: A linear transformation $T: \mathbb{C}^n \to \mathbb{C}^m$ is a **Euclidean isometry** if $x^*x = (Tx)^*(Tx)$ for all $x \in \mathbb{C}^n$ Unitary U is an Euclidean isometry.

Euclidean isometry and Parseval's Theorem

1. Let F_N be the FFT (Fast Fourier Transform matrix) of dimension $N \times N$, i. e.

$$
F_N(m,n)=\frac{1}{\sqrt{N}}e^{\frac{-2\pi(m-1)(n-1)}{N}}
$$

- 2. F_N is a unitary matrix.
- 3. Let $y = F_N x$ i.e, y is the N point FFT of x. 3.1 Length of $x =$ Length of y
	- 3.2 $\sum_{j=1}^{N} |x(j)|^2 = \sum_{j=1}^{N} |y(j)|^2$: This is energy conservation or Parseval's Theorem in DSP.

Unitary equivalence

Def: A matrix $B \in M_n$ is unitarily equivalent (or similar) to $A \in M_n$ if $B = U^*AU$ for some unitary matrix U.

Compare:

(i) $A \rightarrow S^{-1}AS$: similarity (Ch 1,3) (ii) $A \rightarrow S^*AS$: *congruence (Ch 4)

(iii) $A \rightarrow S^*AS$ with S unitary : unitary similarity (Ch 2)

Theorem: If A and B are unitarily equivalent then

$$
||A||_F^2 \triangleq \sum_{i,j} |a_{ij}|^2 = \sum_{i,j} |b_{ij}|^2 = ||B||_F^2
$$

Unitary matrices and Plane Rotations : 2-D case

- \triangleright Consider rotating the 2 − D Euclidean plane counter-clockwise by an angle θ .
- \blacktriangleright Resulting coordinates,

$$
\begin{cases}\nx' = x \cos \theta - y \sin \theta \\
y' = x \sin \theta + y \cos \theta\n\end{cases}\n\iff\n\begin{bmatrix}\nx' \\
y'\n\end{bmatrix}\n=\n\begin{bmatrix}\n\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta\n\end{bmatrix}\n\begin{bmatrix}\nx \\
y\n\end{bmatrix}
$$
\n
$$
\text{Note that } U = \begin{bmatrix}\n\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta\n\end{bmatrix} \text{ is unitary.}
$$

Plane Rotations : General Case

$$
U(\theta, 2, 4) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta) & 0 & -\sin(\theta) \\ 0 & 0 & 1 & 0 \\ 0 & \sin(\theta) & 0 & \cos(\theta) \end{bmatrix}
$$

- \triangleright U(θ , 2, 4) rotates the second and fourth axes in R⁴ counter clock-wise by θ .
- ▶ The other axes are not changed.
- \blacktriangleright Left multiplication by $U(\theta, 2, 4)$ affects only rows 2 and 4.
- \blacktriangleright Note that $U(\theta, 2, 4)$ is unitary.
- \blacktriangleright Such $U(\theta, m, n)$ are called Givens rotations.

Product of Givens rotations

- \blacktriangleright $U = U(\theta_1, 1, 3)U(\theta_2, 2, 4)$ rotates
	- \triangleright second and fourth axes in \mathbb{R}^4 counter clock-wise by θ_2 .
	- \triangleright first and third axes in \mathbb{R}^4 counter clock-wise by θ_1 .
- \triangleright U is unitary \Rightarrow product of Givens rotations is unitary.
- ▶ Such matrices are used in Least-Squares and eigenvalue computations.

Special Unitary matrices: Householder matrices

Let $w \in \mathbb{C}^n$ be a normalized $(w^*w = 1)$ vector and define

 $U_w = I - 2ww^*$

Properties:

- 1. U_w is unitary and Hermitian.
- 2. $U_w x = x, \forall x \perp w$.
- 3. $U_w w = -w$

"Full size" QR:

5pt]

4. There is a Householder matrix such that

 $y = U_w x$

for any given real vectors x and y of the same length.

9 / 26

KTH Schur's unitary triangularization thm

QR-factorization

KTH

Thm: If $A \in M_{n,m}$ then

transformations.

computations etc.

Theorem:

Given $A \in M_n$ with eigenvalues $\lambda_1, \ldots, \lambda_n$, there is a unitary matrix $U \in M_n$ such that

 $A = QR$

 $\blacktriangleright Q \in M_n$ is unitary, $R \in M_{n,m}$ is upper triangular with

▶ Can be described as Gram Schmidt orthogonalization

nonnegative diagonal elements.

combined with book keeping.

 \blacktriangleright If A is real, Q and R can be taken real.

▶ Alternative algorithm: Series of Householder

▶ Useful in Least squares solutions, eigenvalue

$$
U^*AU = T = [t_{ij}]
$$

is upper triangular with $t_{ii} = \lambda_i$ $(i = 1, \ldots, n)$ in any prescribed order. If $A \in M_n(\mathbf{R})$ and all λ_i are real, U may be chosen real and orthogonal.

Alternatives for Tall Matrix, $QR = A \in M_{n,m}$, $n > m$

1

 $\sqrt{ }$

 \overline{R}

1

=

 $\sqrt{ }$ $\overline{1}$ \perp \perp

1

 $\overline{}$

=

 $\sqrt{ }$

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

 \overline{A}

1 \mathbf{I} \mathbf{I} \mathbf{I}

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

 \overline{A}

1

 $\overline{}$

 $\overline{}$

 $\overline{}$

1

 \int

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

 \overbrace{Q}

 $\sqrt{ }$

∗ ∗

"Economy size" QR: $\Big\}$ ∗ ∗ ∗ ∗ ∗ ∗ $\overline{1}$ $\left| \right|$ \mathbf{I} $\sum_{\tilde{\alpha}}$ Q˜ ∗ ∗ 0 ∗ $\sum_{\tilde{p}}$ \tilde{R}

 $\sqrt{ }$

11 / 26

10 / 26

Shur, cont.

Unitary similarity: Any matrix in M_n is unitarily similar to an

upper (or lower) triangular matrix. Note that $A = UTU^*$. Uniqueness:

- 1. Neither U nor T is unique.
- 2. Eigenvalues can appear in any order
- 3. Two triangular matrices can be unitarily similar

Implications:

- 1. tr $A = \sum_j \lambda_j(A)$
- **2.** det $A = \prod_j \lambda_j(A)$
- 3. Cayley-Hamilton theorem.
- 4. . . .

Schur: The general real case

Given $A \in M_n(\mathbf{R})$, there is a real orthogonal matrix $Q \in M_n(\mathbf{R})$ such that

$$
Q^{T}AQ = \begin{bmatrix} A_{1} & * & \cdots & * \\ 0 & A_{2} & & \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & A_{k} \end{bmatrix} \in M_{n}(R)
$$

where A_i $(i = 1, ..., k)$ are real scalars or 2 by 2 blocks with a non-real pair of complex conjugate eigenvalues.

Cayley-Hamilton theorem

Let $p_A(t) = \det(tI - A)$ be the characteristic polynomial of $A \in M_n$. Then

$$
\rho_{A}(A)=0
$$

Consequences:

- $A^{n+k} = q_k(A)$ $(k \ge 0)$ for some polynomials $q_k(t)$ of degrees $\leq n-1$.
- ► If A is nonsingular: $A^{-1} = q(A)$ for some polynomial $q(t)$ of degree $\leq n-1$.

Important: Note $p_A(C)$ is a matrix valued function.

Normal matrices

Def: A matrix $A \in M_n$ is **normal** if $A^*A = AA^*$.

Examples:

All unitary matrices are normal. All Hermitian matrices are normal.

Def: $A \in M_n$ is unitarily diagonalizable if A is unitarily equivalent to a diagonal matrix.

Facts for normal matrices

The following are equivalent:

- 1. A is normal
- 2. A is unitarily diagonalizable
- 3. $||A||_F^2 \triangleq \sum_{i,j} |a_{ij}|^2 = \sum_{i=1}^n |\lambda_i|^2$

4. there is an orthonormal set of *n* eigenvectors of A The equivalence of 1 and 2 is called "the Spectral Theorem for Normal matrices."

Important special case: Hermitian (sym) matrices

Spectral theorem for Hermitian matrices: If $A \in M_n$ is Hermitian, then,

- � all eigenvalues are real
- \blacktriangleright A is unitarily diagonalizable.

$$
\blacktriangleright A = \sum_{k=1}^n \lambda_k e_k e_k^* = E\Lambda E^*
$$

If $A \in M_n(\mathsf{R})$ is symmetric, then A is real orthogonally diagonalizable.

- \triangleright Simple to study equivalence if two objects in an equivalence class can be related to one representative object.
	- \blacktriangleright Requirements of the *representatives*
		- \blacktriangleright Belong to the equivalence class.
		- One per class.
	- ▶ Set of such representatives is a Canonical form
	- \triangleright We are interested in a canonical form for equivalence relation defined by similarity.

Theorem: Any $A \in M_{m,n}$ can be decomposed as $A = V\Sigma W^*$

- $\triangleright \; V \in M_m$: Unitary with columns being eigenvectors of AA∗.
- \triangleright W \in M_n: Unitary with columns being eigenvectors of A^*A .
- \triangleright $\Sigma = [\sigma_{ii}] \in M_{m,n}$ has $\sigma_{ii} = 0$, $\forall i \neq j$

Suppose rank $(A) = k$ and $q = min\{m, n\}$, then

- $\blacktriangleright \sigma_{11} > \cdots > \sigma_{kk} > \sigma_{k+1,k+1} = \cdots = \sigma_{aa} = 0$
- $\triangleright \sigma_{ii} \equiv \sigma_i$ square roots of non-zero eigenvalues of AA^{*} (or A^*A)
- \blacktriangleright Unique : σ_i , Non-unique : V, W

Canonical forms: Jordan form

Every equivalence class under similarity contains essentially only one, so called, Jordan matrix:

$$
J = \begin{bmatrix} J_{n_1}(\lambda_1) & 0 \\ 0 & \ddots & \vdots \\ 0 & J_{n_k}(\lambda_k) \end{bmatrix}
$$

where each block $J_k(\lambda) \in M_k$ has the structure

The Jordan form theorem

Note that the orders n_i or λ_i are generally not distinct.

Theorem: For a given matrix $A \in M_n$, there is a nonsingular matrix $S \in M_n$ such that $A = SJS^{-1}$ and $\sum_i n_i = n$. The Jordan matrix is unique up to permutations of the Jordan blocks.

The Jordan form may be numerically unstable to compute but it is of major theoretical interest.

21 / 26

Jordan form cont'd

- \triangleright The number k of Jordan blocks is the number of linearly independent eigenvectors. (Each block is associated with an eigenvector from the standard basis.)
- \blacktriangleright J is diagonalizable iff $k = n$.
- \blacktriangleright The number of blocks corresponding to the same eigenvalue is the geometric multiplicity of that eigenvalue.
- \blacktriangleright The sum of the orders (dimensions) of all blocks corresponding to the same eigenvalue equals the algebraic multiplicity of that eigenvalue.

Applications of the Jordan form

- \triangleright Linear systems: $\dot{x}(t) = Ax(t); x(0) = x_0$ The solution may be "easily" obtained by changing state variables to the Jordan form.
- \triangleright Convergent matrices: If all elements of A^m tend to zero as $m \to \infty$, then A is a **convergent matrix**.
	- Fact: A is convergent iff $\rho(A) < 1$ (that is, iff $|\lambda_i|$ < 1, $\forall i$). This may be proved, e.g., by using the Jordan canonical form.
- � Excellent (counter)examples in theoretical derivations.
- \blacktriangleright

22 / 26

Triangular factorizations

Linear systems of equations are easy to solve if we can factorize the system matrix as $A = LU$ where $L(U)$ is lower (upper) triangular.

Theorem: If $A \in M_n$, then there exist permutation matrices $P, Q \in M_n$ such that

$$
A = \mathit{PLUQ}
$$

(in some cases we can take $Q = I$ and/or $P = I$).

When to use what?

