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Lecture 3: Outline
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Cayley-H., Normal matrices, Spectral thm, Singular value
decomp.
» Ch. 3: Canonical forms: Jordan/Matrix factorizations
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Unitary matrices cont’d

The following are equiv.

1. U is unitary

2. U is nonsingular and U~! = U*

3. UU* =1

4. U* is unitary

5. the columns of U are orthonormal

6. the rows of U are orthonormal

7. for all x € C", the Euclidean length of y = Ux equals

that of x.
Def: A linear transformation T : C" — C™ is a Euclidean
isometry if x*x = (Tx)*(Tx) for all x € C"
Unitary U is an Euclidean isometry.

Unitary matrices

> A set of vectors {x;} € C" are called
» orthogonal if x'x; =0, Vi # j and
» orthonormal if they are orthogonal and x}'x; = 1, Vi.

» A matrix U € M, is unitary if U*U = /.

» A matrix U € M,(R) is real orthogonal if UTU = I.
» (A matrix U € M, is orthogonal if UUT = 1)

» If U,V are unitary then UV is unitary.

» Unitary matrices form a group under multiplication.
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Euclidean isometry and Parseval’'s Theorem

1. Let Fy be the FFT (Fast Fourier Transform matrix) of
dimension N x N, i. e,

1 —27(m—1)(n—1)
Fn(m,n) = ——=e e

VN

2. Fp is a unitary matrix.

3. Let y = Fyx i.e, y is the N point FFT of x.
3.1 Length of x = Length of y

3.2 EJN:1 Ix()|? = Zszl ly(j)|? : This is energy conservation

or Parseval's Theorem in DSP.
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Unitary equivalence

Def: A matrix B € M, is unitarily equivalent (or similar) to » Consider rotating the 2 — D Euclidean plane
A€ M, if B= U*AU for some unitary matrix U. counter-clockwise by an angle 6.
» Resulting coordinates,

Unitary matrices and Plane Rotations : 2-D case

Compare:

(i) A— SLAS : similarity (Ch 1,3) X' =xcosf —ysing M _ [cose —sine] N
(i) A— S*AS : *congruence (Ch 4) y' = xsinf + y cosd y' sinf cosf | |y
(iii) A— S*AS with S unitary : unitary similarity (Ch 2) - Note that U sl —sing _—

Theorem: If A and B are unitarily equivalent then ~ |sin@  cosf Y
IAIE 2D " lagl* =D 1bs1> = |1B7
i i
— J
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Plane Rotations : General Case Product of Givens rotations
1 0 0 0 » U= U(01,1,3)U(62,2,4) rotates
U(9,2,4) = 0 cos(f) 0 —sin(0) » second and fourth axes in R* counter clock-wise by 5.
B 0 0 1 0 > first and third axes in R* counter clock-wise by 6.
0 sin(f) 0 cos(9) » U is unitary = product of Givens rotations is unitary.

v

U(6,2, 4) rotates the second and fourth axes in R*

counter clock-wise by 6. computations.

v

The other axes are not changed.

v

Left multiplication by U(0,2,4) affects only rows 2 and 4.

v

Note that U(6,2,4) is unitary.

v

Such U(6, m, n) are called Givens rotations.

» Such matrices are used in Least-Squares and eigenvalue
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Special Unitary matrices: Householder matrices

Let w € C" be a normalized (w*w = 1) vector and define
Uy =1-2ww*

Properties:
1. U, is unitary and Hermitian.

2. Upyx=x,¥V x L w.

3. Uyw =—w

4. There is a Householder matrix such that
y = Upx

for any given real vectors x and y of the same length.

QR-factorization

Thm: If A€ M, then
A= QR

v

Q € M, is unitary, R € M, , is upper triangular with
nonnegative diagonal elements.

> If Aisreal, @ and R can be taken real.

» Can be described as Gram Schmidt orthogonalization
combined with book keeping.

» Alternative algorithm: Series of Householder
transformations.

» Useful in Least squares solutions, eigenvalue
computations etc.
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Alternatives for Tall Matrix, QR =A € My m, n > m Schur’s unitary triangularization thm
Theorem:
% ok ok ok L x X
"Full size” QR: L L O Given A € M, with eigenvalues A1, ..., \,, there is a unitary
* ox ok x| |00 * % matrix U € M, such that
x % *x x| [0 O * ok *
Q R A _ . . ) :
5pt] is upper triangular with t; = X; (i=1,...,n) in any
% % . prescribed order. If A € M,(R) and all \; are real, U may be
chosen real and orthogonal.
"Economy size” QR: *or {* *] —|*
* x| |0 x x %
x k| T * %
——— R ——
) A

Note: @ has orthonormal columns: Q*Q = /,

_
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Shur, cont.

Unitary similarity: Any matrix in M, is unitarily similar to an
upper (or lower) triangular matrix. Note that A= UTU™*.

Uniqueness:
1. Neither U nor T is unique.
2. Eigenvalues can appear in any order
3. Two triangular matrices can be unitarily similar
Implications:
S trA =30 A(A)
. detA= HJ- Ai(A)
. Cayley-Hamilton theorem.

—

AwWN
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Schur: The general real case

Given A € M,(R), there is a real orthogonal matrix
Q € Mp(R) such that

A1 * Ce *
0 A
QTAQ - . i . € Mn(R)
0 ... 0 A
where A; (i =1,..., k) are real scalars or 2 by 2 blocks with a

non-real pair of complex conjugate eigenvalues.
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Cayley-Hamilton theorem

Let pa(t) = det(t/ — A) be the characteristic polynomial of
A€ M,. Then
pa(A) =0
Consequences:
» A"k = g, (A) (k > 0) for some polynomials qy(t)
of degrees < n— 1.

> If Ais nonsingular: A=! = g(A) for some polynomial

q(t) of degree < n— 1.
Important: Note pa(C) is a matrix valued function.
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Normal matrices

Def: A matrix A € M, is normal if A*A = AA*.

Examples:
All unitary matrices are normal.
All Hermitian matrices are normal.

Def: A € M, is unitarily diagonalizable if A is unitarily
equivalent to a diagonal matrix.
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Facts for normal matrices

The following are equivalent:

1. Ais normal

2. Ais unitarily diagonalizable

3. [IAIF £ 325l = N
4. there is an orthonormal set of n eigenvectors of A

The equivalence of 1 and 2 is called “the Spectral Theorem for
Normal matrices.”

Important special case: Hermitian (sym) matrices

Spectral theorem for Hermitian matrices:
If A€ M, is Hermitian, then,

» all eigenvalues are real

» A is unitarily diagonalizable.

n
> A=) Mcecej = ENE”
k=1
If A€ M,(R) is symmetric, then A is real orthogonally
diagonalizable.
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SVD: Singular Value Decomposition Canonical forms
Theorem: Any A € M, , can be decomposed as » An equivalence relation partitions the domain.
A=VrIw* » Simple to study equivalence if two objects in an
» V € M,,: Unitary with columns being eigenvectors of equivalence class can be related to one representative
AA*. object.
» W € M,: Unitary with columns being eigenvectors of > Requirements of the representatives
A A » Belong to the equivalence class.
' .. » One per class.
> L =[o5] € My has 0y =0, Vi # » Set of such representatives is a Canonical form
Suppose rank(A) = k and g = min{m, n}, then » We are interested in a canonical form for equivalence
S relation defined by similarity.
> 011 = " 2 Okk > Oyl ksl =+ = 0gq =0
» 0 = 0; square roots of non-zero eigenvalues of AA*
(or A*A)
» Unique : o;, Non-unique : V, W
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Canonical forms: Jordan form The Jordan form theorem

Every equivalence class under similarity contains essentially Note that the orders n; or \; are generally not distinct.
only one, so called, Jordan matrix:
Iny (A1) 0 Theorem: For a given matrix A € M, there is a nonsingular
J = . matrix S € M, such that A= SJS! and Y, n; = n. The
Jordan matrix is unique up to permutations of the Jordan
0 J”k(Ak) block
ocks.
where each block Jx(\) € My has the structure
A 1 0 ... 0] The Jordan form may be numerically unstable to compute but
0 A 1 it is of major theoretical interest.
Jk(A) =
0 Al
_0 )\_
_J _
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Jordan form cont’d Applications of the Jordan form
» The number k of Jordan blocks is the number of linearly » Linear systems: x(t) = Ax(t); x(0) = xo The solution
independent eigenvectors. (Each block is associated with may be “easily’” obtained by changing state variables to
an eigenvector from the standard basis.) the Jordan form.

» J is diagonalizable iff k = n. .
» Convergent matrices: If all elements of A™ tend to zero

» The number of blocks corresponding to the same as m — 0o, then A is a convergent matrix.

eigenvalue is the geometric multiplicity of that eigenvalue.
Fact: A is convergent iff p(A) < 1 (that is, iff

|Ai] < 1, Vi). This may be proved, e.g., by using the
Jordan canonical form.

» The sum of the orders (dimensions) of all blocks
corresponding to the same eigenvalue equals the algebraic

multiplicity of that eigenvalue.
» Excellent (counter)examples in theoretical derivations.
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Triangular factorizations

Linear systems of equations are easy to solve if we can
factorize the system matrix as A = LU where L (U) is lower
(upper) triangular.

Theorem: If A € M, then there exist permutation matrices
P, Q@ € M, such that
A= PLUR

(in some cases we can take Q =/ and/or P = /).

When to use what?

Theoretical
derivations

Practical
implem.

Schur triangularization

&)

QR factorization

©

Spectral dec.

©0)

SVD

©

Jordan form
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