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Homework # 2
Numbers below refer to problems in Horn, Johnson “Matrix analysis, 2nd
ed.” A number 1.1.P.2 refers to Problem 2 in Section 1.1.

Note that there are 8 problems in total (see also the back side of the
paper sheet).

1. (1.1.P.1) Suppose A ∈ Mn is nonsingular. For each λ ∈ σ(A), show
that λ−1 ∈ σ(A−1). If Ax = λx and x 6= 0, show that A−1x = λ−1x.

2. (1.1.P.5) Let A ∈ Mn be idempotent, that is, A2 = A. Show that each
eigenvalue of A is either 0 or 1. Explain why I is the only nonsingular
idempotent matrix.

3. (1.1.P.6) Show that all eigenvalues of a nilpotent matrix are 0. Give
an example of a nonzero nilpotent matrix. Explain why 0 is the only
nilpotent idempotent matrix.

4. (1.3.P.4, approx. 1.3.P.5 in old book) If A ∈Mn has distinct eigenvalues
α1, . . . , αn and commutes with a given matrix B ∈ Mn, show that B
is diagonalizable and that there is a polynomial p(t) of degree at most
n− 1, such that B = p(A).

5. (1.3.P.7) A matrix A ∈Mn is a square root of B ∈Mn if A2 = B. Show

that every diagonalizable B ∈Mn has a square root. Does B =

[
0 1
0 0

]
have a square root? Why?



6. (1.4.P.1) Let nonzero vectors x, y ∈ Mn be given, let A = xy∗ and let
λ = y∗x. Show that

(a) λ is an eigenvalue of A;

(b) x is a right and y is a left eigenvector of A associated with λ;

(c) if λ 6= 0, then it is the only nonzero eigenvalue of A (algebraic
multiplicity=1).

Explain why any vector that is orthogonal to y is in the null space of
A. What is the geometric multiplicity of the eigenvalue 0? Explain why
A is diagonalizable if and only if y∗x 6= 0.

7. (1.4.P.7) In this problem we outline a simple version of the power met-
hod for finding the largest modulus eigenvalue and an associated eigen-
vector of A ∈ Mn . Suppose that A ∈ Mn has distinct eigenvalues
λ1, . . . , λn and that there is exactly one eigenvalue λn of maximum
modulus ρ(A). If x(0) ∈ Cn is not orthogonal to a left eigenvector asso-
ciated with λn, show that the sequence

x(k+1) =
1√

x(k)∗x(k)
Ax(k), k = 0, 1, 2, . . .

converges to an eigenvector of A, and the ratios of a given nonzero
entry in the vectors Ax(k) and x(k) converge to λn.

8. (1.4.P.8) As a continuation of the previous exercise, further eigenvalues
(and eigenvectors) of A can be calculated by combining the power met-
hod with a deflation that delivers a square matrix of size one smaller,
whose spectrum (with multiplicities) contains all but one eigenvalue
of A. Let S ∈Mn be nonsingular and have as its first column an eigen-

vector y(n) associated with eigenvalue λn. Show that S−1AS =

[
λn ∗
0 B

]
and the eigenvalues of B ∈ Mn−1 are λ1, . . . , λn−1. Another eigenvalue
may be calculated from B and the deflation can be repeated until all
eigenvalues have been found.


