Lecture 3:
 Probability, Statistics and Pattern
 Recognition
 DT2118 Speech and Speaker Recognition

Giampiero Salvi

KTH/CSC/TMH giampi@kth.se
VT 2016

Components of ASR System

Representation

Different views on probabilities

Axiomatic defines axioms and derives properties
Classical number of ways something can happen over total number of things that can happen (e.g. dice)
Logical same, but weight the different ways
Frequency frequency of success in repeated experiments
Propensity
Subjective degree of belief

Axiomatic view on probabilities (Kolmogorov)

Given an event E in a event space F

1. $P(E) \geq 0$ for all $E \in F$
2. sure event Ω : $P(\Omega)=1$
3. E_{1}, E_{2}, \ldots countable sequence of pairwise disjoint events, then

$$
P\left(E_{1} \cup E_{2} \cup \cdots\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)
$$

Consequences

1. Monotonicity: $P(A) \leq P(B)$ if $A \subseteq B$

2. Empty set $\emptyset: P(\emptyset)=0$
3. Bounds: $0 \leq P(E) \leq 1$ for all $E \in F$

More Consequences: Addition

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

More Consequences: Negation

$$
P(\bar{A})=P(\Omega \backslash A)=1-P(A)
$$

Conditional Probabilities

$$
P(A \mid B)
$$

The probability of event A when we know that event B has happened

Note: different from the probability that event A and event B happen

Conditional Probabilities

$$
P(A \mid B) \neq P(A \cap B)
$$

Conditional Probabilities

$$
P(A \mid B) \neq P(A \cap B)
$$

Conditional Probabilities

$$
P(A \mid B) \neq P(A \cap B)
$$

Conditional Probabilities

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Bayes' Rule

if

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

then

$$
P(A \cap B)=P(A \mid B) P(B)=P(B \mid A) P(A)
$$

and

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Discrete vs Continuous variables

- Discrete events: either 1 , 2, 3, 4, 5, or 6 .
- Discrete probability distribution $p(x)=P(d=x)$
- $P(d=1)=1 / 6$ (fair dice)
- Any real number (theoretically infinite)
- Distribution function (PDF) $f(x)$ (NOT PROBABILITY!!!)
- $P(t=36.6)=0$
- $P(36.6<t<36.7)=0.1$

Gaussian distributions: One-dimensional

$$
f\left(x \mid \mu, \sigma^{2}\right)=N\left(\mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right]
$$

Gaussian distributions: One-dimensional

$$
f\left(x \mid \mu, \sigma^{2}\right)=N\left(\mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right]
$$

Bayes rule with continuous variables

- Discrete case:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- Continuous case (not probabilities)

$$
P(A \mid x)=\frac{f(x \mid A) P(A)}{f(x)}
$$

- Continuous case (probabilities)

$$
P(A \mid x)=\frac{f(x \mid A) d x P(A)}{f(x) d x}
$$

Gaussian distributions: d Dimensions

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{d}
\end{array}\right] \quad \mu=\left[\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
\ldots \\
\mu_{d}
\end{array}\right] \quad \Sigma=\left[\begin{array}{cccc}
\sigma_{11} & \sigma_{12} & \ldots & \sigma_{1 d} \\
\sigma_{21} & \ldots & & \\
\ldots & & & \\
\sigma_{d 1} & \ldots & & \sigma_{d d}
\end{array}\right]
$$

$$
f(\mathbf{x} \mid \mu, \Sigma)=\frac{\exp \left[-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right]}{(2 \pi)^{\frac{2}{2}}|\Sigma|^{\frac{1}{2}}}
$$

The Probabilistic Model of Classification

- "Nature" assumes one of c states ω_{j} with a priori probability $P\left(\omega_{j}\right)$
- When in state ω_{j}, "nature" emits observations $\hat{\mathbf{x}}$ with distribution $p\left(\mathbf{x} \mid \omega_{j}\right)$

class conditional probability distributions

Problem

- If I observe $\hat{\mathbf{x}}$ and I know $P\left(\omega_{j}\right)$ and $p\left(\mathbf{x} \mid \omega_{j}\right)$ for each j
- what can I say about the state of "nature" ω_{j} ?

Bayes decision theory

$$
P\left(\omega_{j} \mid \mathbf{x}\right)=\frac{p\left(\mathbf{x} \mid \omega_{j}\right) P\left(\omega_{j}\right)}{p(\mathbf{x})}
$$

posterior probabilities

x

Classifiers: Discriminant Functions

Classifiers: Decision Boundaries

Figure from Huang, Acero, Hon.

Decision Boundaries in Two Dimensions

Figure from Huang, Acero, Hon.

Bayes' Rule and Pattern Recognition

$A=$ words, $B=$ sounds:

- During training we know the words and can compute P (sounds|words) using frequentist approach (repeated observations)
- during recognition we want $\widehat{\text { words }}=\arg \max P$ (words|sounds)
- using Bayes' rule:

$$
P(\text { words } \mid \text { sounds })=\frac{P(\text { sounds } \mid \text { words }) P(\text { words })}{P(\text { sounds })}
$$

where
P (words): a priori probability of the words (Language Model)
P (sounds): a priori probability of the sounds (constant, can be ignored)

Estimation Theory

- so far we assumed we know $P\left(\omega_{j}\right)$ and $p\left(\mathbf{x} \mid \omega_{j}\right)$
- how can we obtain them from collections of data?
- this is the subject of Estimation Theory

Parametric vs Non-Parametric Estimation

Parametric

non parametric

Parameter estimation

Assumptions:

- samples from class ω_{i} do not influence estimate for class $\omega_{j}, i \neq j$
- samples from the same class are independent and identically distributed (i.i.d.)

Parameter estimation (cont.)

- class independence assumption:

- Maximum likelihood estimation
- Maximum a posteriori estimation
- Bayesian estimation

Maximum likelihood estimation

- Find parameter vector $\hat{\theta}$ that maximises $p(\mathcal{D} \mid \theta)$ with $\mathcal{D}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$
- i.i.d. $\rightarrow p(\mathcal{D} \mid \theta)=\prod_{k=1}^{n} p\left(\mathbf{x}_{k} \mid \theta\right)$

Maximum likelihood estimation

- Find parameter vector $\hat{\theta}$ that maximises $p(\mathcal{D} \mid \theta)$ with $\mathcal{D}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$
- i.i.d. $\rightarrow p(\mathcal{D} \mid \theta)=\prod_{k=1}^{n} p\left(\mathbf{x}_{k} \mid \theta\right)$

Maximum likelihood estimation

- Find parameter vector $\hat{\theta}$ that maximises $p(\mathcal{D} \mid \theta)$ with $\mathcal{D}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$
- i.i.d. $\rightarrow p(\mathcal{D} \mid \theta)=\prod_{k=1}^{n} p\left(\mathbf{x}_{k} \mid \theta\right)$

ML estimation of Gaussian mean

$$
N\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right], \text { with } \theta=\left\{\mu, \sigma^{2}\right\}
$$

Log-likelihood of data (i.i.d. samples):

$$
\log P(\mathcal{D} \mid \theta)=\sum_{i=1}^{N} \log N\left(x_{i} \mid \mu, \sigma^{2}\right)=-N \log (\sqrt{2 \pi \sigma})-\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}
$$

$$
0=\frac{d \log P(\mathcal{D} \mid \theta)}{d \mu}=\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)}{\sigma^{2}}=\frac{\sum_{i=1}^{N} x_{i}-N \mu}{\sigma^{2}}
$$

$$
\hat{\mu}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

ML estimation of Gaussian parameters

$$
\begin{aligned}
\hat{\mu} & =\frac{1}{N} \sum_{i=1}^{N} x_{i} \\
\hat{\sigma}^{2} & =\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\hat{\mu}\right)^{2}
\end{aligned}
$$

- same result by minimizing the sum of square errors!
- but we make assumptions explicit

Problem: few data points

10 repetitions with 5 points each

Problem: few data points

10 repetitions with 5 points each

Maximum a Posteriori Estimation

$$
\hat{\mu}, \hat{\sigma}^{2}=\arg \max _{\mu, \sigma^{2}}\left[\prod_{i=1}^{N} P\left(x_{i} \mid \mu, \sigma^{2}\right) P\left(\mu, \sigma^{2}\right)\right]
$$

where the prior $P\left(\mu, \sigma^{2}\right)$ needs a nice mathematical form for closed solution

$$
\begin{aligned}
\hat{\mu}_{\mathrm{MAP}} & =\frac{N}{N+\gamma} \hat{\mu}_{\mathrm{ML}}+\frac{\gamma}{N+\gamma} \delta \\
\hat{\sigma}_{\mathrm{MAP}}^{2} & =\frac{N}{N+3+2 \alpha} \hat{\sigma}_{\mathrm{ML}}^{2}+\frac{2 \beta+\gamma\left(\delta+\hat{\mu}_{\mathrm{MAP}}\right)^{2}}{N+3+2 \alpha}
\end{aligned}
$$

where $\alpha, \beta, \gamma, \delta$ are parameters of the prior distribution

ML, MAP and Point Estimates

- Both ML and MAP produce point estimates of θ
- Assumption: there is a true value for θ
- advantage: once $\hat{\theta}$ is found, everything is known

Overfitting

Figure from Huang, Acero, Hon.

Overfitting: Phoneme Discrimination

Figure from Huang, Acero, Hon.

Bayesian estimation

- Consider θ as a random variable
- characterize θ with the posterior distribution $P(\theta \mid \mathcal{D})$ given the data

- for new data points, instead of $P\left(\mathbf{x}_{\text {new }} \mid \hat{\theta}_{\mathrm{ML}}\right)$ or $P\left(\mathbf{x}_{\text {new }} \mid \hat{\theta}_{\text {MAP }}\right)$, compute:

$$
P\left(\mathbf{x}_{\text {new }} \mid \mathcal{D}\right)=\int_{\theta \in \Theta} P\left(\mathbf{x}_{\text {new }} \mid \theta\right) P(\theta \mid \mathcal{D}) d \theta
$$

Bayesian estimation (cont.)

- we can compute $p(\mathbf{x} \mid \mathcal{D})$ instead of $p(\mathbf{x} \mid \hat{\theta})$
- integrate the joint density $p(\mathbf{x}, \theta \mid \mathcal{D})=p(\mathbf{x} \mid \theta) p(\theta \mid \mathcal{D})$

$p(\mathbf{x} \mid \hat{\theta})$

Bayesian estimation

- we can compute $p(\mathbf{x} \mid \mathcal{D})$ instead of $p(\mathbf{x} \mid \hat{\theta})$
- integrate the joint density $p(\mathbf{x}, \theta \mid \mathcal{D})=p(\mathbf{x} \mid \theta) p(\theta \mid \mathcal{D})$

X

$$
p(\mathbf{x} \mid \mathcal{D})=
$$

$$
\int p(\mathbf{x} \mid \theta) p(\theta \mid \mathcal{D}) d \theta
$$

Bayesian estimation

- we can compute $p(\mathbf{x} \mid \mathcal{D})$ instead of $p(\mathbf{x} \mid \hat{\theta})$
- integrate the joint density $p(\mathbf{x}, \theta \mid \mathcal{D})=p(\mathbf{x} \mid \theta) p(\theta \mid \mathcal{D})$

Bayesian estimation

- we can compute $p(\mathbf{x} \mid \mathcal{D})$ instead of $p(\mathbf{x} \mid \hat{\theta})$
- integrate the joint density $p(\mathbf{x}, \theta \mid \mathcal{D})=p(\mathbf{x} \mid \theta) p(\theta \mid \mathcal{D})$

Bayesian estimation (cont.)

Pros:

- better use of the data
- makes a priori assumptions explicit
- easily implemented recursively
- use posterior $p(\theta \mid \mathcal{D})$ as new prior
- reduce overfitting

Cons:

- definition of noninformative priors can be tricky
- often requires numerical integration

Other Training Strategies: Discriminative Training

- Maximum Mutual Information Estimation
- Minimum Error Rate Estimation
- Neural Networks

Multi layer neural networks

Multi layer neural networks

- Backpropagation algorithm

Unsupervised Learning

- so far we assumed we knew the class ω_{i} for each data point
- what if we don't?
- class independence assumption loses meaning

Vector Quantisation, K-Means

- describes each class with a centroid
- a point belongs to a class if the corresponding centroid is closest (Euclidean distance)
- iterative procedure
- guaranteed to converge
- not guaranteed to find the optimal solution
- used in vector quantization

K-means: algorithm

Data: k (number of desired clusters), n data points \mathbf{x}_{i}
Result: k clusters
initialization: assign initial value to k centroids \mathbf{c}_{i}; repeat
assign each point \mathbf{x}_{i} to closest centroid \mathbf{c}_{j}; compute new centroids as mean of each group of points;
until centroids do not change;
return k clusters;

K-means: example

iteration 20, update clusters

K-means: sensitivity to initial conditions

iteration 20, update clusters

Solution: LBG Algorithm

- Linde-Buzo-Gray
- start with one centroid
- adjust to mean
- split centroid (with ϵ)
- K-means
- split again...

K-means: limits of Euclidean distance

- the Euclidean distance is isotropic (same in all directions in \mathbb{R}^{p})
- this favours spherical clusters
- the size of the clusters is controlled by their distance

K-means: non-spherical classes

two non-spherical classes

Probabilistic Clustering

- model data as a mixture of probability distributions (Gaussian)
- each distribution corresponds to a cluster
- clustering corresponds to parameter estimation

Gaussian distributions

$$
f_{k}\left(\mathbf{x}_{i} \mid \mu_{k}, \Sigma_{k}\right)=\frac{\exp \left\{-\frac{1}{2}\left(\mathbf{x}_{i}-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(\mathbf{x}_{i}-\mu_{k}\right)\right\}}{(2 \pi)^{\frac{p}{2}}\left|\Sigma_{k}\right|^{\frac{1}{2}}}
$$

Eigenvalue decomposition of the covariance matrix:

$$
\Sigma_{k}=\lambda_{k} D_{k} A_{k} D_{k}^{T}
$$

Mixture of Gaussian distributions

Σ_{k}	Distribution	Volume	Shape	Orientation
λI	Spherical	Equal	Equal	N / A
$\lambda_{k} I$	Spherical	Variable	Equal	N / A
$\lambda D A D^{T}$	Ellipsoidal	Equal	Equal	Equal
$\lambda_{k} A D_{k}^{T}$	Ellipsoidal	Equal	Equal	Variable
$\lambda_{k} D_{k} A D_{k}^{T}$	Ellipsoidal	Variable	Equal	Variable
$\lambda_{k} D_{k} A_{k} D_{k}^{T}$	Ellipsoidal	Variable	Variable	Variable

Fitting the model

- given the data $D=\left\{\mathbf{x}_{i}\right\}$
- given a certain model \mathcal{M} and its parameters θ
- maximize the model fit to the data as expressed by the likelihood

$$
\mathcal{L}=p(D \mid \theta)
$$

Unsupervised Case

- release class independence assumption:
- learn the mixture at once
- problem of missing data
- solution: Expectation Maximization

Expectation Maximization

Fitting model parameters with missing (latent) variables

$$
\begin{gathered}
P(\mathbf{x} \mid \theta)=\sum_{k=1}^{K} \pi_{k} P\left(x \mid \theta_{k}\right), \\
\text { with } \theta=\left\{\pi_{1}, \ldots, \pi_{k}, \theta_{1}, \ldots, \theta_{k}\right\}
\end{gathered}
$$

- very general idea (applies to many different probabilistic models)
- augment the data with the missing variables: $h_{i k}$ probability of assignment of each data point x_{i} to each component of the mixture k
- optimize the Likelihood of the complete data:

$$
P(\mathbf{x}, \mathbf{h} \mid \theta)
$$

Mixture of Gaussians

This distribution is a weight sum of K Gaussian distributions

$$
\begin{aligned}
& P(x)=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(x ; \mu_{k}, \sigma_{k}^{2}\right) \\
& \text { where } \pi_{1}+\cdots+\pi_{k}=1 \\
& \text { and } \pi_{k}>0(k=1, \ldots, K) \text {. }
\end{aligned}
$$

This model can describe complex multi-modal probability distributions by combining simpler distributions.

Mixture of Gaussians

$$
P(x)=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(x ; \mu_{k}, \sigma_{k}^{2}\right)
$$

- Learning the parameters of this model from training data x_{1}, \ldots, x_{n} is not trivial - using the usual straightforward maximum likelihood approach.
- Instead learn parameters using the Expectation-Maximization (EM) algorithm.

Mixture of Gaussians as a marginalization

We can interpret the Mixture of Gaussians model with the introduction of a discrete hidden/latent variable h and $P(x, h)$:

$$
\begin{aligned}
P(x)=\sum_{k=1}^{K} P(x, h=k) & =\sum_{k=1}^{K} P(x \mid h=k) P(h=k) \\
& =\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(x ; \mu_{k}, \sigma_{k}^{2}\right)
\end{aligned}
$$

Figures taken from Computer Vision: models, learning and inference by Simon Prince.

EM for two Gaussians

Assume: We know the pdf of x has this form:

$$
P(x)=\pi_{1} \mathcal{N}\left(x ; \mu_{1}, \sigma_{1}^{2}\right)+\pi_{2} \mathcal{N}\left(x ; \mu_{2}, \sigma_{2}^{2}\right)
$$

where $\pi_{1}+\pi_{2}=1$ and $\pi_{k}>0$ for components $k=1,2$.
Unknown: Values of the parameters (Many!)

$$
\Theta=\left(\pi_{1}, \mu_{1}, \sigma_{1}, \mu_{2}, \sigma_{2}\right)
$$

Have: Observed n samples x_{1}, \ldots, x_{n} drawn from $P(x)$.
Want to: Estimate Θ from x_{1}, \ldots, x_{n}.
How would it be possible to get them all???

EM for two Gaussians

For each sample x_{i} introduce a hidden variable h_{i}

$$
h_{i}= \begin{cases}1 & \text { if sample } x_{i} \text { was drawn from } \mathcal{N}\left(x ; \mu_{1}, \sigma_{1}^{2}\right) \\ 2 & \text { if sample } x_{i} \text { was drawn from } \mathcal{N}\left(x ; \mu_{2}, \sigma_{2}^{2}\right)\end{cases}
$$

and come up with initial values

$$
\Theta^{(0)}=\left(\pi_{1}^{(0)}, \mu_{1}^{(0)}, \sigma_{1}^{(0)}, \mu_{2}^{(0)}, \sigma_{2}^{(0)}\right)
$$

for each of the parameters.

EM is an iterative algorithm which updates $\Theta^{(t)}$ using the following two steps...

EM for two Gaussians: E-step

The responsibility of k-th Gaussian for each sample x (indicated by the size of the projected data point)

Look at each sample x along hidden variable h in the E-step

Figure from Computer Vision: models, learning and inference by Simon Prince.

EM for two Gaussians: E-step (cont.)

E-step: Compute the "posterior probability" that x_{i} was generated by component k given the current estimate of the parameters $\Theta^{(t)}$. (responsibilities)
for $i=1, \ldots n$

$$
\begin{aligned}
& \text { for } k=1,2 \\
& \qquad \begin{aligned}
\gamma_{i k}^{(t)} & =P\left(h_{i}=k \mid x_{i}, \Theta^{(t)}\right) \\
& =\frac{\pi_{k}^{(t)} \mathcal{N}\left(x_{i} ; \mu_{k}^{(t)}, \sigma_{k}^{(t)}\right)}{\pi_{1}^{(t)} \mathcal{N}\left(x_{i} ; \mu_{1}^{(t)}, \sigma_{1}^{(t)}\right)+\pi_{2}^{(t)} \mathcal{N}\left(x_{i} ; \mu_{2}^{(t)}, \sigma_{2}^{(t)}\right)}
\end{aligned}
\end{aligned}
$$

Note: $\gamma_{i 1}^{(t)}+\gamma_{i 2}^{(t)}=1$ and $\pi_{1}+\pi_{2}=1$

EM for two Gaussians: M-step

Fitting the Gaussian model for each of k-th constinuetnt.
Sample x_{i} contributes according to the responsibility $\gamma_{i k}$.

(dashed and solid lines for fit before and after update)
Look along samples x for each h in the M -step

Figure from Computer Vision: models, learning and inference by Simon Prince.

EM for two Gaussians: M-step (cont.)

M-step: Compute the Maximum Likelihood of the parameters of the mixture model given out data's membership distribution, the $\gamma_{i}^{(t)}$ s:

$$
\begin{aligned}
& \text { for } k=1,2 \\
& \qquad \begin{aligned}
\mu_{k}^{(t+1)} & =\frac{\sum_{i=1}^{n} \gamma_{i k}^{(t)} x_{i}}{\sum_{i=1}^{n} \gamma_{i k}^{(t)}} \\
\sigma_{k}^{(t+1)} & =\sqrt{\frac{\sum_{i=1}^{n} \gamma_{i k}^{(t)}\left(x_{i}-\mu_{k}^{(t+1)}\right)^{2}}{\sum_{i=1}^{n} \gamma_{i k}^{(t)}}} \\
\pi_{k}^{(t+1)} & =\frac{\sum_{i=1}^{n} \gamma_{i k}^{(t)}}{n}
\end{aligned}
\end{aligned}
$$

EM in practice

Hierarchical Clustering

(Figure from Wikipedia)

