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Components of ASR System

Speech Signal
Spectral
Analysis

Feature
Extraction

Search
and Match

Recognised Words

Acoustic Models

Lexical Models

Language Models

Representation

Constraints - Knowledge
Decoder
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Different views on probabilities

Axiomatic defines axioms and derives properties

Classical number of ways something can happen over total
number of things that can happen (e.g. dice)

Logical same, but weight the different ways

Frequency frequency of success in repeated experiments

Propensity

Subjective degree of belief
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Axiomatic view on probabilities (Kolmogorov)
Given an event E in a event space F

1. P(E ) ≥ 0 for all E ∈ F
2. sure event Ω: P(Ω) = 1
3. E1,E2, . . . countable sequence of pairwise disjoint events,

then

P(E1 ∪ E2 ∪ · · · ) =
∞∑

i=1

P(Ei)

E1 ∪ E2 ∪ · · ·

E1

E2

· · ·
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Consequences

1. Monotonicity: P(A) ≤ P(B) if A ⊆ B

B

A

2. Empty set ∅: P(∅) = 0

3. Bounds: 0 ≤ P(E ) ≤ 1 for all E ∈ F
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More Consequences: Addition

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

A B

A ∪ B

A ∩ B
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More Consequences: Negation

P(Ā) = P(Ω \ A) = 1− P(A)

Ω

AΩ \ A
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Conditional Probabilities

P(A|B)

The probability of event A when we know that event B has
happened

Note: different from the probability that event A and event B
happen
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Conditional Probabilities

P(A|B) 6= P(A ∩ B)

Ω

A B

A ∩ B
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Conditional Probabilities

P(A|B) 6= P(A ∩ B)

Ω

A B

A ∩ B
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Conditional Probabilities

P(A|B) 6= P(A ∩ B)

A B ≡ Ω

A ∩ B
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Conditional Probabilities

P(A|B) =
P(A ∩ B)

P(B)

A B ≡ Ω

A ∩ B
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Bayes’ Rule

if

P(A|B) =
P(A ∩ B)

P(B)

then
P(A ∩ B) = P(A|B)P(B) = P(B |A)P(A)

and

P(A|B) =
P(B |A)P(A)

P(B)
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Discrete vs Continuous variables

I Discrete events: either 1,
2, 3, 4, 5, or 6.

I Discrete probability
distribution
p(x) = P(d = x)

I P(d = 1) = 1/6 (fair
dice)

I Any real number
(theoretically infinite)

I Distribution function
(PDF) f (x) (NOT
PROBABILITY!!!)

I P(t = 36.6) = 0

I P(36.6 < t < 36.7) = 0.1
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Gaussian distributions: One-dimensional

f (x |µ, σ2) = N(µ, σ2) =
1√
2πσ

exp

[
−(x − µ)2

2σ2

]

1.92 1.94 1.96 1.98 2 2.02 2.04 2.06 2.08
0

5

10

15

2σ

µ

x

f(
x
)
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Bayes rule with continuous variables

I Discrete case:

P(A|B) =
P(B |A)P(A)

P(B)

I Continuous case (not probabilities)

P(A|x) =
f (x |A)P(A)

f (x)

I Continuous case (probabilities)

P(A|x) =
f (x |A)dxP(A)

f (x)dx
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Gaussian distributions: d Dimensions

x =




x1

x2

. . .
xd


 µ =




µ1

µ2

. . .
µd


 Σ =




σ11 σ12 . . . σ1d

σ21 . . .
. . .
σd1 . . . σdd




f (x|µ,Σ) =
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]

(2π)
d
2 |Σ| 12
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The Probabilistic Model of Classification

I “Nature” assumes one of c states ωj with a priori
probability P(ωj)

I When in state ωj , “nature” emits observations x̂ with
distribution p(x|ωj)

state1 state2 state3

a priori probabilities

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6 class conditional probability distributions

x
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Problem

I If I observe x̂ and I know P(ωj) and

p(x|ωj) for each j

I what can I say about the state of

“nature” ωj?
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Bayes decision theory

state1 state2 state3

a priori probabilities

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6 class conditional probability distributions

x

P(ωj |x) =
p(x|ωj) P(ωj)

p(x)

posterior probabilities

x

●

●

●
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Classifiers: Discriminant Functions

x1

x2

xd

d1

d2

ds

arg max c(x)

di(x) = p(x|ωi) P(ωi)
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Classifiers: Decision Boundaries

Figure from Huang, Acero, Hon.
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Decision Boundaries in Two Dimensions

Figure from Huang, Acero, Hon.
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Bayes’ Rule and Pattern Recognition
A = words, B = sounds:

I During training we know the words and can compute
P(sounds|words) using frequentist approach (repeated
observations)

I during recognition we want

ŵords = arg maxP(words|sounds)

I using Bayes’ rule:

P(words|sounds) =
P(sounds|words)P(words)

P(sounds)

where
P(words): a priori probability of the words (Language Model)
P(sounds): a priori probability of the sounds (constant, can be
ignored)
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Estimation Theory

I so far we assumed we know P(ωj) and p(x|ωj)

I how can we obtain them from collections of data?

I this is the subject of Estimation Theory
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Parametric vs Non-Parametric Estimation

Parametric non parametric
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Parameter estimation
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Assumptions:

I samples from class ωi do not influence estimate for class
ωj , i 6= j

I samples from the same class are independent and
identically distributed (i.i.d.)
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Parameter estimation (cont.)

I class independence assumption:
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I Maximum likelihood estimation

I Maximum a posteriori estimation

I Bayesian estimation
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Maximum likelihood estimation
I Find parameter vector θ̂ that maximises p(D|θ) with
D = {x1, . . . , xn}

I i.i.d. → p(D|θ) =
∏n

k=1 p(xk |θ)

X

p(
D

|th
et

a)

● ● ●●● ● ●● ● ●● ● ● ●●

lik
el

ih
oo

d
lo

g 
lik

el
ih

oo
d
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ML estimation of Gaussian mean

N(x |µ, σ2) =
1√
2πσ

exp

[
−(x − µ)2

2σ2

]
, with θ = {µ, σ2}

Log-likelihood of data (i.i.d. samples):

logP(D|θ) =
N∑

i=1

logN(xi |µ, σ2) = −N log
(√

2πσ
)
−

N∑

i=1

(xi − µ)2

2σ2

0 =
d logP(D|θ)

dµ
=

N∑

i=1

(xi − µ)

σ2
=

∑N
i=1 xi − Nµ

σ2
⇐⇒

µ̂ =
1

N

N∑

i=1

xi
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ML estimation of Gaussian parameters

µ̂ =
1

N

N∑

i=1

xi

σ̂2 =
1

N

N∑

i=1

(xi − µ̂)2

I same result by minimizing the sum of square errors!

I but we make assumptions explicit
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Problem: few data points

10 repetitions with 5 points each

X

●● ● ●●
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Problem: few data points

10 repetitions with 5 points each

X
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Maximum a Posteriori Estimation

µ̂, σ̂2 = arg max
µ,σ2

[
N∏

i=1

P(xi |µ, σ2)P(µ, σ2)

]

where the prior P(µ, σ2) needs a nice mathematical form for
closed solution

µ̂MAP =
N

N + γ
µ̂ML +

γ

N + γ
δ

σ̂2
MAP =

N

N + 3 + 2α
σ̂2

ML +
2β + γ(δ + µ̂MAP)2

N + 3 + 2α

where α, β, γ, δ are parameters of the prior distribution
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ML, MAP and Point Estimates

I Both ML and MAP produce point estimates of θ

I Assumption: there is a true value for θ

I advantage: once θ̂ is found, everything is known

X

p(
D

|th
et
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Overfitting

Figure from Huang, Acero, Hon.
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Overfitting: Phoneme Discrimination

Figure from Huang, Acero, Hon.
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Bayesian estimation

I Consider θ as a random variable

I characterize θ with the posterior distribution P(θ|D)
given the data

ML: D → θ̂ML

MAP: D,P(θ) → θ̂MAP

Bayes: D,P(θ) → P(θ|D)

I for new data points, instead of P(xnew|θ̂ML) or
P(xnew|θ̂MAP), compute:

P(xnew|D) =

∫

θ∈Θ

P(xnew|θ)P(θ|D)dθ

38 / 69



Bayesian estimation (cont.)
I we can compute p(x|D) instead of p(x|θ̂)

I integrate the joint density p(x, θ|D) = p(x|θ)p(θ|D)

p(x|θ̂)

X

p(
D

|th
et

a)

● ● ●●● ● ●● ● ●● ● ● ●●

●

p(x|theta)
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Bayesian estimation
I we can compute p(x|D) instead of p(x|θ̂)

I integrate the joint density p(x, θ|D) = p(x|θ)p(θ|D)

p(x|D) =∫
p(x|θ)p(θ|D)dθ

X

jo
in

 d
is

t

● ●●●● ● ●● ● ●● ● ● ●●
●

in
te

gr
al
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Bayesian estimation (cont.)

Pros:

I better use of the data

I makes a priori assumptions explicit

I easily implemented recursively
I use posterior p(θ|D) as new prior

I reduce overfitting

Cons:

I definition of noninformative priors can be tricky

I often requires numerical integration
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Other Training Strategies: Discriminative Training

I Maximum Mutual Information Estimation

I Minimum Error Rate Estimation

I Neural Networks
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Multi layer neural networks

Multi layer
neural networks

x0 x1 x2
xd

input units

bias unit

output unit

hidden layer

E

I Backpropagation algorithm
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Unsupervised Learning

I so far we assumed we knew the class ωi for each data
point

I what if we don’t?

I class independence assumption loses meaning
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Vector Quantisation, K-Means

I describes each class with a centroid

I a point belongs to a class if the corresponding centroid is
closest (Euclidean distance)

I iterative procedure

I guaranteed to converge

I not guaranteed to find the optimal solution

I used in vector quantization
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K-means: algorithm

Data: k (number of desired clusters), n data points xi
Result: k clusters
initialization: assign initial value to k centroids ci ;
repeat

assign each point xi to closest centroid cj ;
compute new centroids as mean of each group of points;

until centroids do not change;
return k clusters;
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K-means: example

iteration 20, update clusters
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K-means: sensitivity to initial conditions

iteration 20, update clusters
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Solution: LBG Algorithm

I Linde–Buzo–Gray

I start with one centroid

I adjust to mean

I split centroid (with ε)

I K-means

I split again. . .
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K-means: limits of Euclidean distance

I the Euclidean distance is isotropic (same in all directions
in Rp)

I this favours spherical clusters

I the size of the clusters is controlled by their distance
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K-means: non-spherical classes

two non−spherical classes
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Probabilistic Clustering
I model data as a mixture of probability distributions

(Gaussian)

I each distribution corresponds to a cluster

I clustering corresponds to parameter estimation
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Gaussian distributions

fk(xi |µk ,Σk) =
exp

{
−1

2
(xi − µk)TΣ−1

k (xi − µk)
}

(2π)
p
2 |Σk |

1
2

Eigenvalue decomposition of the covariance matrix:

Σk = λkDkAkD
T
k

x1

x2

x1

x2

x1

x2
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Mixture of Gaussian distributions
Σk Distribution Volume Shape Orientation

λI Spherical Equal Equal N/A
λk I Spherical Variable Equal N/A
λDADT Ellipsoidal Equal Equal Equal
λDkAD

T
k Ellipsoidal Equal Equal Variable

λkDkAD
T
k Ellipsoidal Variable Equal Variable

λkDkAkD
T
k Ellipsoidal Variable Variable Variable
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Fitting the model

I given the data D = {xi}
I given a certain model M and its parameters θ

I maximize the model fit to the data as expressed by the
likelihood

L = p(D|θ)
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Unsupervised Case

I release class independence assumption:

I learn the mixture at once

I problem of missing data

I solution: Expectation Maximization
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Expectation Maximization
Fitting model parameters with missing (latent) variables

P(x|θ) =
K∑

k=1

πkP(x |θk),

with θ = {π1, . . . , πk , θ1, . . . , θK}

I very general idea (applies to many different probabilistic
models)

I augment the data with the missing variables: hik
probability of assignment of each data point xi to each
component of the mixture k

I optimize the Likelihood of the complete data:

P(x,h|θ)
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Mixture of Gaussians
This distribution is a weight sum of K Gaussian distributions

P(x) =
K∑

k=1

πk N (x ;µk , σ
2
k)

where π1 + · · ·+ πK = 1
and πk > 0 (k = 1, . . . ,K ).

110 7 Modeling complex data densities

Figure 7.6 Mixture of Gaussians
model in 1D. A complex multimodal
probability density function (black
solid curve) is created by taking a
weighted sum or mixture of several
constituent normal distributions with
different means and variances (red,
green and blue dashed curves). To
ensure that the final distribution is
a valid density, the weights must be
positive and sum to one.

the cost function for the M-Step (equation 7.12) improves the bound. For now we
will assume that these things are true and proceed with the main thrust of the
chapter. We will return to these issues in section 7.8.

7.4 Mixture of Gaussians

The mixture of Gaussians (MoG) is a prototypical example of a model where learn-
ing is suited to the EM algorithm. The data is described as a weighted sum of K
normal distributions

Pr(x|θ) =

K�

k=1

λkNormx[µk,Σk], (7.13)

where µ1...K and Σ1...K are the means and covariances of the normal distributions
and λ1...K are positive valued weights that sum to one. The mixtures of Gaussians
model describes complex multi-modal probability densities by combining simpler
constituent distributions (figure 7.6).

To learn the parameters θ = {µk,Σk,λk}K
k=1 from training data {xi}I

i=1 we
could apply the straightforward maximum likelihood approach

θ̂ = argmax
θ

�
I�

i=1

log [Pr(xi|θ)]

�

= argmax
θ

�
I�

i=1

log

�
K�

k=1

λkNormxi
[µk,Σk]

��
. (7.14)

Unfortunately, if we take the derivative with respect to the parameters θ and equate
the resulting expression to zero, it is not possible to solve the resulting equations
in closed form. The sticking point is the summation inside the logarithm which
precludes a simple solution. Of course, we could use a non-linear optimization
approach, but this would be complex as we would have to maintain the constraints
on the parameters; the weights λ must sum to one and the covariances {Σk}K

k=1
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This model can describe complex multi-modal probability

distributions by combining simpler distributions.
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Mixture of Gaussians

P(x) =
K∑

k=1

πk N (x ;µk , σ
2
k)

I Learning the parameters of this model from training data
x1, . . . , xn is not trivial - using the usual straightforward

maximum likelihood approach.

I Instead learn parameters using the
Expectation-Maximization (EM) algorithm.
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Mixture of Gaussians as a marginalization
We can interpret the Mixture of Gaussians model with the
introduction of a discrete hidden/latent variable h and P(x , h):

P(x) =
K∑

k=1

P(x , h = k) =
K∑

k=1

P(x | h = k)P(h = k)

=
K∑

k=1

πk N (x ;µk , σ
2
k)7.4 Mixture of Gaussians 111

Figure 7.7 Mixture of Gaussians as
a marginalization. The mixture of
Gaussians can also be thought of in
terms of a joint distribution Pr(x, h)
between the observed variable x and
a discrete hidden variable h. To cre-
ate the mixture density we marginal-
ize over h. The hidden variable has
a straightforward interpretation: it is
the index of the constituent normal
distribution.

must be positive definite. For a simpler approach, we express the observed density
as a marginalization and use the EM algorithm to learn the parameters.

7.4.1 Mixtures of Gaussians as a marginalization

The mixtures of Gaussians model can be expressed as the marginalization of a joint
probability distribution between the observed data x and a discrete hidden variable
h that takes values h ∈ {1 . . . K} (figure 7.7). If we define

Pr(x|h,θ) = Normx[µh,Σh]

Pr(h|θ) = Cath[λ], (7.15)

where λ = [λ1 . . .λK ] are the parameters of the categorical distribution. We can
recover the original density using

Pr(x|θ) =

K�

k=1

Pr(x, h = k|θ)

=

K�

k=1

Pr(x|h = k,θ)Pr(h = k|θ)

=

K�

k=1

λkNormx[µk,Σk]. (7.16)

Interpreting the model in this way also provides a method to draw samples
from a mixture of Gaussians: we sample from the joint distribution Pr(x, h), and
then discard the hidden variable h to leave just a data sample x. To sample from
the joint distribution Pr(x, h) we first sample h from the categorical prior Pr(h),
then sample x from the normal distribution Pr(x|h) associated with the value of
h. Notice that the hidden variable h has a clear interpretation in this procedure:
it determines which of the constituent normal distributions is responsible for the
observed data point x.
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← mixture density

Figures taken from Computer Vision: models, learning and inference by Simon Prince.
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EM for two Gaussians

Assume: We know the pdf of x has this form:

P(x) = π1N (x ;µ1, σ
2
1) + π2N (x ;µ2, σ

2
2)

where π1 + π2 = 1 and πk > 0 for components k = 1, 2.

Unknown: Values of the parameters (Many!)

Θ = (π1, µ1, σ1, µ2, σ2).

Have: Observed n samples x1, . . . , xn drawn from P(x).

Want to: Estimate Θ from x1, . . . , xn.

How would it be possible to get them all???
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EM for two Gaussians

For each sample xi introduce a hidden variable hi

hi =

{
1 if sample xi was drawn from N (x ;µ1, σ

2
1)

2 if sample xi was drawn from N (x ;µ2, σ
2
2)

and come up with initial values

Θ(0) = (π
(0)
1 , µ

(0)
1 , σ

(0)
1 , µ

(0)
2 , σ

(0)
2 )

for each of the parameters.

EM is an iterative algorithm which updates Θ(t) using the
following two steps...
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EM for two Gaussians: E-step
The responsibility of k-th Gaussian for each sample x
(indicated by the size of the projected data point)

112 7 Modeling complex data densities

Figure 7.8 E-Step for fitting the mixture of Gaussians model. For each of
the I data points x1...I , we calculate the posterior distribution Pr(hi|xi)
over the hidden variable hi. The posterior probability Pr(hi = k|xi) that hi

takes value k can be understood as the responsibility of normal distribution
k for data point xi. For example, for data point x1 (magenta circle) the
component 1 (red curve) is more than twice as likely to be responsible than
component 2 (green curve). Note that in the joint distribution (left), the
size of the projected data point indicates the responsibility.

7.4.2 Expectation maximization for fitting mixture models

To learn the MoG parameters θ = {λk, µk,Σk}K
k=1 from training data {xi}I

i=1Algorithm 7.1
we apply the EM algorithm. Following the recipe of section 7.3, we initialize the
parameters randomly and alternate between performing the E- and M-Steps.

In the E-Step, we maximize the bound with respect to the distributions qi(hi)
by finding the posterior probability distribution Pr(hi|xi) of each hidden variable
hi given the observation xi and the current parameter settings,

qi(hi) = Pr(hi = k|xi,θ
[t]) =

Pr(xi|hi = k,θ[t])Pr(hi = k,θ[t])
�K

j=1 Pr(xi|hi = j,θ[t])Pr(hi = j,θ[t])

=
λkNormxi

[µk,Σk]
�K

j=1 λjNormxi
[µj ,Σj ]

= rik. (7.17)

Copyright c�2011 by Simon Prince; to be published by Cambridge University Press 2012.
For personal use only, not for distribution.

Look at each sample x along hidden variable h in the
E-step

Figure from Computer Vision: models, learning and inference by Simon Prince.
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EM for two Gaussians: E-step (cont.)

E-step: Compute the “posterior probability” that xi was
generated by component k given the current estimate of the
parameters Θ(t). (responsibilities)

for i = 1, . . . n

for k = 1, 2

γ
(t)
ik = P(hi = k | xi ,Θ(t))

=
π

(t)
k N (xi ;µ

(t)
k , σ

(t)
k )

π
(t)
1 N (xi ;µ

(t)
1 , σ

(t)
1 ) + π

(t)
2 N (xi ;µ

(t)
2 , σ

(t)
2 )

Note: γ
(t)
i1 + γ

(t)
i2 = 1 and π1 + π2 = 1
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EM for two Gaussians: M-step
Fitting the Gaussian model for each of k-th constinuetnt.
Sample xi contributes according to the responsibility γik .7.4 Mixture of Gaussians 113

Figure 7.9 M-Step for fitting the mixture of Gaussians model. For the kth

constituent Gaussian, we update the parameters {λk, µk,Σk}. The ith data
point xi contributes to these updates according to the responsibility rik

(indicated by size of point) assigned in the E-Step; data points that are
more associated with the kth component have more effect on the parameters.
Dashed and solid lines represent fit before and after update respectively.

In other words we compute the probability Pr(hi = k|xi,θ
[t]) that the kth normal

distribution was responsible for the ith data point (figure 7.8). We denote this
responsibility by rik for short.

In the M-Step, we maximize the bound with respect to the parameters θ =
{λk, µk,Σk}K

k=1 so that

θ̂
[t+1]

= argmax
θ

�
I�

i=1

K�

k=1

q̂i(hi = k) log [Pr(xi,hi = k|θ)]

�

= argmax
θ

�
I�

i=1

K�

k=1

rik log [λkNormxi
[µk,Σk]]

�
. (7.18)

This maximization can be performed by taking the derivative of the expression with
Problem 7.3

respect to the parameters, equating the result to zero and rearranging, taking care
to enforce the constraint

�
k λk = 1 using Lagrange multipliers. The procedure

results in the update rules,
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(dashed and solid lines for fit before and after update)

Look along samples x for each h in the M-step

Figure from Computer Vision: models, learning and inference by Simon Prince.
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EM for two Gaussians: M-step (cont.)
M-step: Compute the Maximum Likelihood of the parameters
of the mixture model given out data’s membership
distribution, the γ

(t)
i ’s:

for k = 1, 2

µ
(t+1)
k =

∑n
i=1 γ

(t)
ik xi∑n

i=1 γ
(t)
ik

,

σ
(t+1)
k =

√√√√
∑n

i=1 γ
(t)
ik (xi − µ(t+1)

k )2

∑n
i=1 γ

(t)
ik

,

π
(t+1)
k =

∑n
i=1 γ

(t)
ik

n
.
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EM in practice114 7 Modeling complex data densities

Figure 7.10 a) Initial model. b) E-Step. For each data point the posterior
probability that is was generated from each Gaussian is calculated (indicated
by color of point). c) M-Step. The mean, variance and weight of each
Gaussian is updated based on these posterior probabilities. Ellipse shows
Mahalanobis distance of two. Weight (thickness) of ellipse indicates weight
of Gaussian. d-t) Further E-Step and M-Step iterations.
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Hierarchical Clustering

(Figure from Wikipedia)
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