MATRIX ALGEBRA MAGNUS JANSSON Deadline: 2016–04–06, 10.00

Homework #1

Read Chapter 0 in "Matrix Analysis" and learn as much as possible.

1. Determine the range- and the null-spaces of the matrix

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 4 \end{bmatrix}$$

What are the dimensions of these spaces? What is the rank of A?

2. Let $A \in M_{m,n}(\mathbf{F})$ and $B \in M_{p,n}(\mathbf{F})$. Prove that

$$\operatorname{nullspace}(A) \cap \operatorname{nullspace}(B) = \operatorname{nullspace}\begin{bmatrix}A\\B\end{bmatrix}$$

- 3. Let $A = [a_{ij}] \in M_{m,n}(\mathbb{C})$ and $B \in M_{n,m}(\mathbb{C})$. Show that $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ and that $\operatorname{tr}(AA^*) = \sum_{ij} |a_{ij}|^2$.
- 4. Show that $\det(I+AB) = \det(I+BA)$ where A and B may be rectangular matrices of appropriate dimensions. (Hint: You may use the Schur complement determinantal formulae.)
- 5. Verify the statement that y_2 is orthogonal to z_1 in Section 0.6.4 Gram-Schmidt orthonormalization. Make a graph illustrating the first step of the procedure. Use the fact that $\langle y_2, y_2 \rangle \geq 0$ to prove the Cauchy-Schwarz inequality (in terms of x_2 and y_1). (There is a typo in the book v_1, \ldots, v_n should be x_1, \ldots, x_n .)
- 6. Prove the "push through rule:"

$$A(I_m + BA)^{-1} = (I_n + AB)^{-1}A$$

where inverses are assumed to exist, I_n is an $n \times n$ identity matrix, $A \in M_{n,m}(\mathbf{F})$ and $B \in M_{m,n}(\mathbf{F})$.