Homework assignment to Lecture 8.

The Hilbert transform of a function $u(x)=\sum_{n=-\infty}^{\infty} \hat{u}(n) e_{n}(x), u \in L^{2}\left(S^{1}\right)$ is defined as a function $v(x)=\sum_{n=-\infty}^{\infty}-i \operatorname{sign}(n) \hat{u}(n) e_{n}(x)$. Here, $\operatorname{sign}(n)$ has value 1 for $n \geq 1$, value -1 for $n \leq-1$ and the value 0 at $n=0$.

Compute explicit formula for the Hilbert transform of the function u determined by equations $u(x)=x$ for $|x|<1 / 2$ and $u(x+1)=u(x)$ for all x.

This example shows that the Hilbert transform of a bounded function is not necessarily bounded.

