
Homework Assignment 2
SF2521, Spring 2016

Topics: Duhamel’s principle and stability of numerical schemes; Conserva-
tion form; Relation between non-linear and linearized problems; The Shallow-
water equations; The Lax-Friedrichs Scheme; Solution by characteristics;
Boundary conditions.
Purpose: (1) Understand how inhomogeneous term in a numerical scheme
affect teh solutions. (2) Get acquainted with elementary properties of and
solution schemes for initial-boundary value problems for hyperbolic systems
Instructions: Write a short report with the plots and answers to the ques-
tions posed. Make sure the plots are annotated and there is explanation for
what they illustrate.
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1 Stability of numerical schemes (1p)
Consider a general scheme

Un+1 = Q(tn)Un + ∆tF n

U0 = g

where Un ∈ Rd.

1. Show that the following discrete Duhamel’s Principle holds:

Un = Sh(tn, 0)g + ∆t
n−1∑
ν=0

Sh(tn, tν+1)F ν , (1)

where tn = n∆t, and

Sh(t, t) = I, t ∈ R
Sh(tn+1, tµ) = Q(tn)Sh(tn, tµ).

Explain (1) following the following statements: (i) the inhomogeneous
term F can be regarded as additional initial conditions for each new
time level; and (ii) the solution is the sum of all the solutions that
satisfy each of the “initial conditions”.

2. Show that if
||Sh(tν+1, tν)||h ≤ Keαh, (2)

for some constant α and K independent of h, then

||Un||h ≤ K

(
eαtn||g||h +

ˆ tn

0

eα(tn−s)ds max
0≤ν≤n−1

||F ν ||h
)
. (3)

Here, || · ||h denotes either a norm for the grid functions Un, g, and
F ν , or the associated operator norm for the solution operator Sh(t, t).
This means that stability of the homogeneous problem (F ≡ 0) implies
stability for the inhomogeneous problem.

3. What would change if α = h−1/2 in (2)? Hint: in (3), the exponential
funtions do not depend on the grid — no matter how one decreases h,
the exponents remain the same.
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2 The Shallow Water Model
In this exercise we shall investigate the relation between a non-linear problem
and the corresponding linearized version. In particular we will see how well
linear analysis predicts the behavior of the nonlinear problem.

Shallow water flow over a horizontal bottom is modeled by
ht + (hv)x = 0, (conservation of volume)
(hv)t + (hv2 + 1

2
gh2)x = 0, (force belance in x)

on (x, t) ∈ [0, L]× [0,∞),

(4)

where h is the water height (depth) and v the velocity of the water. In this
model, the water velocity does not vary vertically. You may check Leveque’s
book for related discussion. We prescribe the boundary conditions v(0) =
v(L) = 0 which says that water stay still at the boundaries, and the initial
conditions that corresponds to a localized "water hill",{

h(x, 0) = H + εe−(x−L/2)2/w2

v(x, 0) = 0
(5)

We shall take L = 10m, H = 1m, and g = 9.61(m/s2). The “width” w of the
water hill is 0.4m and its height ε will be varied.

2.1 Numerical Solution (1 p)

To begin with, let ε = 0.1 and solve numerically the conservation form equa-
tions, for h and ρ = hv, using the Lax-Friedrichs method: u = (h, hv)T ,

un+1
j − unj +

∆t

∆x

(
FLxF (uj+1, uj)− FLxF (uj, uj−1)

)
= 0,

where the Lax-Friedrichs flux is defined as

FLxF (uj+1, uj) :=
1

2
[f(uj+1) + f(uj)− α(uj+1 − uj)] , α = max

u
|f ′(u)|,

for j = 0,±1,±2, · · · . Use ghost cells at the boundaries. Prescribe values
there by the procedure described in Leveque Ch 7 for solid walls. In this
problem, maxu |f ′(u)|may be taken to be the eigenvalue of f ′ with the largest
magnitude, but you may use α = ∆x

∆t
for (1) and (2) below. Choose ∆t ≤

C∆x and experiment with different constants C. Use ∆t/∆x as large as
possible, without violating stability.

3



1. Make plots showing wave propagation and reflections at the boundaries.
Compute at least until waves have been reflected at both boundaries
and crossed each other, say until t = 3.

2. Run the program again with larger values of ε(= 0.4, 0.8, 1.2, . . . ). De-
scribe how the solutions change with respect to

(a) Wave shape, amplitude

(b) Wave speed

(c) Wave collisions?

(d) You may have to adjust the time-step to ensure stability. Why?

3. Experiment with different values of α, say α = C0
∆x
∆t
, C0 ∈ [0.5, 1.5].

Compare the solutions that you computed with different values of α.

2.2 Linearization

1. (0.5p) Choose a constant state (h0, v0) which is consistent with the
prescribed initial and boundary conditions, and derive the linearized
problem at that state. Show that the linear problem is hyperbolic and
compute wave speeds.

2. (1p) The linear constant coefficient problem that you derived above can
be solved analytically by diagonalizing the system using eigenvectors.
Determine the solution of the linear problem at t = 1. Discuss how
information propagates, if the boundary conditions cause reflections
and when reflected waves will appear. Compare with the numerical
results for the non-linear case that you computed.

2.3 Non-reflecting Boundary Conditions (0.5p)

Derive boundary conditions that do not cause reflections for the linear prob-
lem. Formulate the corresponding conditions for the non–linear case. Im-
plement the conditions in your program using either the technique of char-
acteristic variables or by simply extrapolating all variables at the boundary
(as described in Leveque Ch 7). How well does the method work? Try to
measure the size of the reflection.
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Figure 1: A diagram of the numerical setup

3 Suggestions for program structure
The homework assignments in this course require coding of several finite
volume schemes for initial-boundary value problems for a number of different
models, mostly explicit. You can of course code as you find practical; we have
found the following structure useful. It is possible to separate the scheme
from the equation system by defining the flux function f as the programming
interface between scheme and equation. The state variables q for a system
of s equations can be stored in an N × s array, say Q(1:N,1:s) .

• Fill ghost cells 0 and N + 1 by the boundary conditions; and augment
Q by rows for the ghost cells 0 and N + 1.

• Compute the numerical fluxes Fi+1/2, i = 0, 1, . . . , N . This may entail
much more computation than evaluating the flux function f which de-
fines the differential equation, but for the Lax-Friedrichs scheme it is
not much more.

• Compute the flux differences.

• Update the cells 1, . . . , N .

• Repeat the previous steps.

Two more suggestions:

• For debugging, put plotting into the code so you can inspect the so-
lution and the fluxes and other ingredients at each time step; turn off
the plotting and printing when the code works.

• Arrange – by saving solutions on file and implementing interpolation
functions, if need be – so that solutions from different grids and with
different parameter settings can be compared point-wise (in time and
space), e.g. for showing convergence in L2 – norm and showing several
solutions in one plot.
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