DD2448 Foundations of Cryptography Lecture 6

Douglas Wikström KTH Royal Institute of Technology dog@kth.se

February 26, 2016

DD2448 Foundations of Cryptography **February 26, 2016** February 26, 2016

Public-Key Cryptography

DD2448 Foundations of Cryptography **February 26, 2016** February 26, 2016

Cipher (Symmetric Cryptosystem)

Public-Key Cryptosystem

Public-key cryptography was discovered:

- ▶ By Ellis, Cocks, and Williamson at the Government Communications Headquarters (GCHQ) in the UK in the early 1970s (not public until 1997).
- ► Independently by Merkle in 1974 (Merkle's puzzles).
- ► Independently in its discrete-logarithm based form by Diffie and Hellman in 1977, and instantiated in 1978 (key-exchange).
- ▶ Independently in its factoring-based form by Rivest, Shamir and Adleman in 1977.

Definition. A public-key cryptosystem is a tuple (Gen, E, D) where,

- \triangleright Gen is a probabilistic key generation algorithm that outputs key pairs (pk,sk),
- \triangleright E is a (possibly probabilistic) encryption algorithm that given a public key pk and a message m in the plaintext space \mathcal{M}_{pk} outputs a ciphertext c, and
- \triangleright D is a decryption algorithm that given a secret key sk and a ciphertext c outputs a plaintext m ,

such that $D_{sk}(E_{pk}(m)) = m$ for every (pk, sk) and $m \in \mathcal{M}_{pk}$.

DD2448 Foundations of Cryptography February 26, 2016

Key Generation.

► Choose $n/2$ -bit primes p and q randomly and define $N = pq$.

• Choose *e* in
$$
\mathbb{Z}_{\phi(N)}^*
$$
 and compute $d = e^{-1} \text{ mod } \phi(N)$.

▶ Output the key pair $((N, e), (p, q, d))$, where (N, e) is the public key and (p, q, d) is the secret key.

Encryption. Encrypt a plaintext $m \in \mathbb{Z}_N^*$ $_{N}^{*}$ by computing

 $c = m^e \mod N$.

Decryption. Decrypt a ciphertext c by computing

 $m = c^d \mod N$.

 $\left(m^e \bmod{N} \right)^d$ mod $N=m^{ed}$ mod N

$$
(me mod N)d mod N = med mod N
$$

$$
= m1+t\phi(N) mod N
$$

$$
(me mod N)d mod N = med mod N
$$

= $m^{1+t\phi(N)}$ mod N
= $m^1 \cdot (m^{\phi(N)})^t$ mod N

$$
(me mod N)d mod N = med mod N
$$

= $m^{1+t\phi(N)}$ mod N
= $m^{1} \cdot (m^{\phi(N)})^{t}$ mod N
= $m \cdot 1^{t}$ mod N

$$
(me mod N)d mod N = med mod N
$$

= $m^{1+t\phi(N)}$ mod N
= $m^{1} \cdot (m^{\phi(N)})^t$ mod N
= $m \cdot 1^t$ mod N
= m mod N

- \blacktriangleright Modular arithmetic.
- \blacktriangleright Greatest common divisor.
- ▶ Primality test.

Basic operations on $O(n)$ -bit integers using "school book" implementations.

Basic operations on $O(n)$ -bit integers using "school book" implementations.

Optimal algorithms for multiplication and modular reduction are much faster.

Basic operations on $O(n)$ -bit integers using "school book" implementations.

Optimal algorithms for multiplication and modular reduction are much faster.

What about modular exponentiation?

Modular Arithmetic (2/3)

Square-and-Multiply.

```
SquareAndMultiply(x, e, N)1 \quad z \leftarrow 12 i =index of most significant one
3 while i > 0do
4 z \leftarrow z \cdot z \mod N5 if e_i = 1then z \leftarrow z \cdot x \mod N6 i \leftarrow i - 17 return z
```
Although the basic is the same, the most efficient algorithms for exponentiation is faster.

Computing g^{x_1}, \ldots, g^{x_k} can be done much faster!

Computing $\prod_{i \in [k]} g_i^{x_i}$ can be done much faster!

Although the basic is the same, the most efficient algorithms for exponentiation is faster.

Computing g^{x_1}, \ldots, g^{x_k} can be done much faster!

Computing $\prod_{i \in [k]} g_i^{x_i}$ can be done much faster!

How about side channel attacks?

The primes are relatively dense.

The primes are relatively dense.

Theorem. Let $\pi(m)$ denote the number of primes $0 < p \le m$. Then

$$
\lim_{m\to\infty}\frac{\pi(m)}{\frac{m}{\ln m}}=1.
$$

The primes are relatively dense.

Theorem. Let $\pi(m)$ denote the number of primes $0 < p \le m$. Then

$$
\lim_{m\to\infty}\frac{\pi(m)}{\frac{m}{\ln m}}=1.
$$

To generate a random prime, we repeatedly pick a random integer m and check if it is prime. It should be prime with probability close to $1/\ln m$ in a sufficently large interval.

Definition. Given an odd integer $b \geq 3$, an integer a is called a quadratic residue modulo b if there exists an integer x such that $a = x^2 \mod b$.

Definition. The Legendre Symbol of an integer a modulo an **odd prime** p is defined by

$$
\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases} 0 & \text{if } a = 0 \\ 1 & \text{if } a \text{ is a quadratic residue modulo } p \\ -1 & \text{if } a \text{ is a quadratic non-residue modulo } p \end{cases}
$$

.

Legendre Symbol (2/2)

Theorem. If p is an odd prime, then

$$
\left(\frac{a}{p}\right) = a^{(p-1)/2} \bmod p.
$$

Legendre Symbol (2/2)

Theorem. If p is an odd prime, then

$$
\left(\frac{a}{p}\right) = a^{(p-1)/2} \bmod p.
$$

Proof.

• If
$$
a = y^2 \mod p
$$
, then $a^{(p-1)/2} = y^{p-1} = 1 \mod p$.

Theorem. If p is an odd prime, then

$$
\left(\frac{a}{p}\right) = a^{(p-1)/2} \bmod p.
$$

Proof.

• If
$$
a = y^2 \mod p
$$
, then $a^{(p-1)/2} = y^{p-1} = 1 \mod p$.

• If
$$
a^{(p-1)/2} = 1 \mod p
$$
 and *b* generates \mathbb{Z}_p^* , then
\n $a^{(p-1)/2} = b^{x(p-1)/2} = 1 \mod p$ for some *x*. Since *b* is a
\ngenerator, $(p-1) | x(p-1)/2$ and *x* must be even.

Theorem. If p is an odd prime, then

$$
\left(\frac{a}{p}\right) = a^{(p-1)/2} \bmod p.
$$

Proof.

• If
$$
a = y^2 \mod p
$$
, then $a^{(p-1)/2} = y^{p-1} = 1 \mod p$.

► If $a^{(p-1)/2} = 1$ mod p and b generates \mathbb{Z}_p^* , then $a^{(p-1)/2} = b^{x(p-1)/2} = 1$ mod p for some x. Since b is a generator, $(p-1) | x(p-1)/2$ and x must be even.

• If *a* is a non-residue, then
$$
a^{(p-1)/2} \neq 1 \mod p
$$
, but $(a^{(p-1)/2})^2 = 1 \mod p$, so $a^{(p-1)/2} = -1 \mod p$.

Definition. The **Jacobi Symbol** of an integer a modulo an odd integer $b = \prod_i \rho_i^{e_i}$, with ρ_i prime, is defined by

$$
\left(\frac{a}{b}\right) = \prod_i \left(\frac{a}{p_i}\right)^{e_i}
$$

.

Note that we can have $\left(\frac{a}{b}\right)$ $\left(\frac{a}{b}\right) = 1$ even when *a* is a non-residue modulo b.