
DD2448 Foundations of Cryptography

Lecture 6

Douglas Wikström
KTH Royal Institute of Technology

dog@kth.se

February 26, 2016

DD2448 Foundations of Cryptography February 26, 2016



Public-Key Cryptography

DD2448 Foundations of Cryptography February 26, 2016



Cipher (Symmetric Cryptosystem)

E E−1cm

k k

m

c = Ek(m) m = E−1k (c)

Alice Bob
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Public-Key Cryptosystem

E Dcm

pk sk

m

c = Epk(m) m = Dsk(c)

Alice Bob
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History of Public-Key Cryptography

Public-key cryptography was discovered:

◮ By Ellis, Cocks, and Williamson at the Government
Communications Headquarters (GCHQ) in the UK in the early
1970s (not public until 1997).

◮ Independently by Merkle in 1974 (Merkle’s puzzles).

◮ Independently in its discrete-logarithm based form by Diffie
and Hellman in 1977, and instantiated in 1978 (key-exchange).

◮ Independently in its factoring-based form by Rivest, Shamir
and Adleman in 1977.
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Public-Key Cryptography

Definition. A public-key cryptosystem is a tuple (Gen,E,D)
where,

◮ Gen is a probabilistic key generation algorithm that
outputs key pairs (pk, sk),

◮ E is a (possibly probabilistic) encryption algorithm that
given a public key pk and a message m in the plaintext space
Mpk outputs a ciphertext c , and

◮ D is a decryption algorithm that given a secret key sk and a
ciphertext c outputs a plaintext m,

such that Dsk(Epk(m)) = m for every (pk, sk) and m ∈ Mpk.
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RSA
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The RSA Cryptosystem (1/2)

Key Generation.

◮ Choose n/2-bit primes p and q randomly and define N = pq.

◮ Choose e in Z
∗

φ(N) and compute d = e−1 mod φ(N).

◮ Output the key pair ((N, e), (p, q, d)), where (N, e) is the
public key and (p, q, d) is the secret key.
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The RSA Cryptosystem (2/2)

Encryption. Encrypt a plaintext m ∈ Z
∗

N by computing

c = me mod N .

Decryption. Decrypt a ciphertext c by computing

m = cd mod N .
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Why Does It Work?

(me mod N)d mod N = med mod N
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Why Does It Work?

(me mod N)d mod N = med mod N

= m1+tφ(N) mod N

DD2448 Foundations of Cryptography February 26, 2016



Why Does It Work?

(me mod N)d mod N = med mod N

= m1+tφ(N) mod N

= m1 ·
(

mφ(N)
)t

mod N
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Why Does It Work?

(me mod N)d mod N = med mod N

= m1+tφ(N) mod N

= m1 ·
(

mφ(N)
)t

mod N

= m · 1t mod N
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Why Does It Work?

(me mod N)d mod N = med mod N

= m1+tφ(N) mod N

= m1 ·
(

mφ(N)
)t

mod N

= m · 1t mod N

= m mod N
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Implementing RSA

◮ Modular arithmetic.

◮ Greatest common divisor.

◮ Primality test.
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Modular Arithmetic (1/3)

Basic operations on O(n)-bit integers using “school book”
implementations.

Operation Running time

Addition O(n)
Subtraction O(n)
Multiplication O(n2)
Modular reduction O(n2)
Greatest common divisor O(n2)
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Modular Arithmetic (1/3)

Basic operations on O(n)-bit integers using “school book”
implementations.

Operation Running time

Addition O(n)
Subtraction O(n)
Multiplication O(n2)
Modular reduction O(n2)
Greatest common divisor O(n2)

Optimal algorithms for multiplication and modular reduction are
much faster.
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Modular Arithmetic (1/3)

Basic operations on O(n)-bit integers using “school book”
implementations.

Operation Running time

Addition O(n)
Subtraction O(n)
Multiplication O(n2)
Modular reduction O(n2)
Greatest common divisor O(n2)

Optimal algorithms for multiplication and modular reduction are
much faster.

What about modular exponentiation?
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Modular Arithmetic (2/3)

Square-and-Multiply.

SquareAndMultiply(x , e,N)

1 z ← 1
2 i =index of most significant one
3 while i ≥ 0

do

4 z ← z · z mod N

5 if ei = 1
then z ← z · x mod N

6 i ← i − 1
7 return z
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Modular Arithmetic (3/3)

Although the basic is the same, the most efficient algorithms for
exponentiation is faster.

Computing gx1 , . . . , gxk can be done much faster!

Computing
∏

i∈[k] g
xi
i can be done much faster!
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Modular Arithmetic (3/3)

Although the basic is the same, the most efficient algorithms for
exponentiation is faster.

Computing gx1 , . . . , gxk can be done much faster!

Computing
∏

i∈[k] g
xi
i can be done much faster!

How about side channel attacks?
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Prime Number Theorem

The primes are relatively dense.
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Prime Number Theorem

The primes are relatively dense.

Theorem. Let π(m) denote the number of primes 0 < p ≤ m.
Then

lim
m→∞

π(m)
m
lnm

= 1 .
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Prime Number Theorem

The primes are relatively dense.

Theorem. Let π(m) denote the number of primes 0 < p ≤ m.
Then

lim
m→∞

π(m)
m
lnm

= 1 .

To generate a random prime, we repeatedly pick a random integer
m and check if it is prime. It should be prime with probability close
to 1/ lnm in a sufficently large interval.
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Legendre Symbol (1/2)

Definition. Given an odd integer b ≥ 3, an integer a is called a
quadratic residue modulo b if there exists an integer x such that
a = x2 mod b.

Definition. The Legendre Symbol of an integer a modulo an
odd prime p is defined by

(

a

p

)

=







0 if a = 0
1 if a is a quadratic residue modulo p

−1 if a is a quadratic non-residue modulo p

.
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Legendre Symbol (2/2)

Theorem. If p is an odd prime, then

(

a

p

)

= a(p−1)/2 mod p .
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Legendre Symbol (2/2)

Theorem. If p is an odd prime, then

(

a

p

)

= a(p−1)/2 mod p .

Proof.

◮ If a = y2 mod p, then a(p−1)/2 = yp−1 = 1 mod p.
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Legendre Symbol (2/2)

Theorem. If p is an odd prime, then

(

a

p

)

= a(p−1)/2 mod p .

Proof.

◮ If a = y2 mod p, then a(p−1)/2 = yp−1 = 1 mod p.

◮ If a(p−1)/2 = 1 mod p and b generates Z∗

p, then

a(p−1)/2 = bx(p−1)/2 = 1 mod p for some x . Since b is a
generator, (p − 1) | x(p − 1)/2 and x must be even.

DD2448 Foundations of Cryptography February 26, 2016



Legendre Symbol (2/2)

Theorem. If p is an odd prime, then

(

a

p

)

= a(p−1)/2 mod p .

Proof.

◮ If a = y2 mod p, then a(p−1)/2 = yp−1 = 1 mod p.

◮ If a(p−1)/2 = 1 mod p and b generates Z∗

p, then

a(p−1)/2 = bx(p−1)/2 = 1 mod p for some x . Since b is a
generator, (p − 1) | x(p − 1)/2 and x must be even.

◮ If a is a non-residue, then a(p−1)/2 6= 1 mod p, but
(

a(p−1)/2
)2

= 1 mod p, so a(p−1)/2 = −1 mod p.
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Jacobi Symbol

Definition. The Jacobi Symbol of an integer a modulo an odd
integer b =

∏

i p
ei
i , with pi prime, is defined by

(a

b

)

=
∏

i

(

a

pi

)ei

.

Note that we can have
(

a
b

)

= 1 even when a is a non-residue
modulo b.
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