DD2448 Foundations of Cryptography Lecture 5

Douglas Wikström KTH Royal Institute of Technology dog@kth.se

February 19, 2016

DD2448 Foundations of Cryptography **February 19, 2016** February 19, 2016

Let us turn this expression into a definition.

Definition. Let X be a random variable taking values in X. Then the **entropy** of X is

$$
H(X) = -\sum_{x \in \mathcal{X}} P_X(x) \log P_X(x) .
$$

Examples and intuition are nice, but what we need is a theorem that states that this is **exactly** the right expected length of an optimal code.

Definition. Let (X, Y) be a random variable taking values in $X \times Y$. We define **conditional entropy**

$$
H(X|y) = -\sum_{x} P_{X|Y} (x|y) \log P_{X|Y} (x|y)
$$
 and

$$
H(X|Y) = \sum_{y} P_{Y}(y) H(X|y)
$$

Note that $H(X|y)$ is simply the ordinary entropy function of a random variable with probability function $P_{X|Y}$ ($\cdot |y)$.

Let X be a random variable taking values in \mathcal{X} .

Upper Bound. $H(X) = \mathrm{E} [-\log P_X(X)] \leq \log |\mathcal{X}|$.

Chain Rule and Conditioning.

$$
H(X, Y) = -\sum_{x,y} P_{X,Y}(x,y) \log P_{X,Y}(x,y)
$$

= $-\sum_{x,y} P_{X,Y}(x,y) (\log P_Y(y) + \log P_{X|Y}(x|y))$
= $-\sum_{y} P_Y(y) \log P_Y(y) - \sum_{x,y} P_{X,Y}(x,y) \log P_{X|Y}(x|y)$
= $H(Y) + H(X|Y) \le H(Y) + H(X)$

Elementary Number **Theory**

DD2448 Foundations of Cryptography **February 19, 2016** February 19, 2016

Definition. A common divisor of two integers m and n is an integer d such that $d \mid m$ and $d \mid n$.

Definition. A greatest common divisor (GCD) of two integers m and n is a common divisor d such that every common divisor d' divides d.

Definition. A common divisor of two integers m and n is an integer d such that $d \mid m$ and $d \mid n$.

Definition. A greatest common divisor (GCD) of two integers m and n is a common divisor d such that every common divisor d' divides d.

 \blacktriangleright The GCD is the positive GCD.

Definition. A common divisor of two integers m and n is an integer d such that $d \mid m$ and $d \mid n$.

Definition. A greatest common divisor (GCD) of two integers m and n is a common divisor d such that every common divisor d' divides d.

- \blacktriangleright The GCD is the positive GCD.
- \triangleright We denote the GCD of m and n by gcd (m, n) .

 \blacktriangleright gcd $(m, n) =$ gcd (n, m)

$$
\blacktriangleright \gcd(m,n)=\gcd(m\pm n,n)
$$

$$
\blacktriangleright \gcd(m, n) = \gcd(m \mod n, n)
$$

- ► gcd(m, n) = 2 gcd(m/2, n/2) if m and n are even.
- ► gcd(m, n) = gcd(m/2, n) if m is even and n is odd.

EUCLIDEAN (m, n) (1) while $n \neq 0$ (2) $t \leftarrow n$ (3) $n \leftarrow m \mod n$ (4) $m \leftarrow t$ (5) return m

Steins Algorithm (Binary GCD Algorithm)

```
STEIN(m, n)(1) if m = 0 or n = 0 then return 0
(2) s \leftarrow 0(3) while m and n are even
(4) m \leftarrow m/2, n \leftarrow n/2, s \leftarrow s + 1(5) while n is even
(6) n \leftarrow n/2(7) while m \neq 0(8) while m is even
(9) m \leftarrow m/2(10) if m < n(11) SWAP(m, n)(12) m \leftarrow m - n(13) m \leftarrow m/2(14) return 2<sup>s</sup> n
```
Lemma. There exists integers a and b such that

 $gcd(m, n) = am + bn$.

Lemma. There exists integers a and b such that

$$
\gcd(m,n)=am+bn.
$$

Proof. Let $d > \gcd(m, n)$ be the smallest positive integer on the form $d = am + bn$. Write $m = cd + r$ with $0 < r < d$. Then

$$
d > r = m - cd = m - c(am + bn) = (1 - ca)m + (-cb)n ,
$$

a contradiction! Thus, $r = 0$ and $d \mid m$. Similarly, $d \mid n$.

EXTENDEDEUCLIDEAN (m, n) (1) if m mod $n = 0$ (2) return $(0, 1)$ (3) else (4) $(x, y) \leftarrow \text{EXTENDEDEUCLIDEAN}(n, m \text{ mod } n)$ (5) return $(y, x - y |m/n|)$

If $(x, y) \leftarrow$ EXTENDEDEUCLIDEAN (m, n) then $gcd(m, n) = xm + yn$.

Definition. Two integers m and n are coprime if their greatest common divisor is 1.

Fact. If a and n are coprime, then there exists a b such that $ab = 1$ mod n.

Definition. Two integers m and n are coprime if their greatest common divisor is 1.

Fact. If a and n are coprime, then there exists a b such that $ab = 1$ mod n.

Excercise: Why is this so?

Theorem. (Sun Tzu 400 AC) Let n_1, \ldots, n_k be positive pairwise coprime integers and let a_1, \ldots, a_k be integers. Then the equation system

> $x = a_1 \mod n_1$ $x = a_2 \mod n_2$ $x = a_3 \mod n_3$. . . $x = a_k \mod n_k$

has a unique solution in $\{0,\ldots,\prod_i n_i-1\}$.

1. Set $N = n_1 n_2 \cdot ... \cdot n_k$.

2. Find r_i and s_i such that $r_i n_i + s_i \frac{N}{n_i}$ $\frac{N}{n_i}=1$ (Bezout).

3. Note that

$$
s_i \frac{N}{n_i} = 1 - r_i n_i = \begin{cases} 1 & (\text{mod } n_i) \\ 0 & (\text{mod } n_j) \end{cases} \quad \text{if } j \neq i
$$

4. The solution to the equation system becomes:

$$
x=\sum_{i=1}^k\left(s_i\frac{N}{n_i}\right)\cdot a_i
$$

The set $\mathbb{Z}_n^* = \{0 \le a < n : \gcd(a, n) = 1\}$ forms a group, since:

- \triangleright Closure. It is closed under multiplication modulo n.
- Associativity. For $x, y, z \in \mathbb{Z}_n^*$:

$$
(xy)z = x(yz) \bmod n .
$$

Identity. For every
$$
x \in \mathbb{Z}_n^*
$$
:

$$
1 \cdot x = x \cdot 1 = x \; .
$$

► Inverse. For every $a \in \mathbb{Z}_n^*$ exists $b \in \mathbb{Z}_n^*$ such that:

$$
ab=1 \bmod n .
$$

Theorem. If H is a subgroup of a finite group G , then $|H|$ divides $|G|$.

Proof.

- 1. Define $aH = \{ah : h \in H\}$. This gives an equivalence relation $x \approx y \Leftrightarrow x = yh \wedge h \in H$ on G.
- 2. The map $\phi_{\pmb{a},\pmb{b}}: \pmb{a} \pmb{H} \to \pmb{b} \pmb{H},$ defined by $\phi_{\pmb{a},\pmb{b}}(\pmb{\mathsf{x}}) = \pmb{b} \pmb{a}^{-1} \pmb{\mathsf{x}}$ is a bijection, so $|aH| = |bH|$ for $a, b \in G$.

► Clearly: $\phi(p) = p - 1$ when p is prime.

- ► Clearly: $\phi(p) = p 1$ when p is prime.
- ► Similarly: $\phi(p^k) = p^k p^{k-1}$ when p is prime and $k > 1$.

► Clearly: $\phi(p) = p - 1$ when p is prime.

► Similarly: $\phi(p^k) = p^k - p^{k-1}$ when p is prime and $k > 1$.

▶ In general:
$$
\phi\left(\prod_i p_i^{k_i}\right) = \prod_i \left(p_i^{k} - p_i^{k-1}\right)
$$
.

► Clearly: $\phi(p) = p - 1$ when p is prime.

► Similarly: $\phi(p^k) = p^k - p^{k-1}$ when p is prime and $k > 1$.

▶ In general:
$$
\phi\left(\prod_i p_i^{k_i}\right) = \prod_i \left(p_i^{k} - p_i^{k-1}\right)
$$
.

Excercise: How does this follow from CRT?

Theorem. (Fermat) If $b \in \mathbb{Z}_p^*$ and p is prime, then $b^{p-1}=1$ mod p .

Theorem. (Euler) If $b \in \mathbb{Z}_n^*$, then $b^{\phi(n)} = 1$ mod n.

Theorem. (Fermat) If $b \in \mathbb{Z}_p^*$ and p is prime, then $b^{p-1}=1$ mod p .

Theorem. (Euler) If $b \in \mathbb{Z}_n^*$, then $b^{\phi(n)} = 1$ mod n.

Proof. Note that $|\mathbb{Z}_n^*| = \phi(n)$. *b* generates a subgroup $\langle b \rangle$ of \mathbb{Z}_n^* , so $|\langle b\rangle|$ divides $\phi(n)$ and $b^{\phi(n)}=1$ mod $n.$

Definition. A group G is called **cyclic** if there exists an element g such that each element in G is on the form g^χ for some integer $x.$

Theorem. If p is prime, then \mathbb{Z}_p^* is cyclic.

Definition. A group G is called **cyclic** if there exists an element g such that each element in G is on the form g^χ for some integer $x.$

Theorem. If p is prime, then \mathbb{Z}_p^* is cyclic.

Every group of prime order is cyclic. Why?

Definition. A group G is called **cyclic** if there exists an element g such that each element in G is on the form g^χ for some integer $x.$

Theorem. If p is prime, then \mathbb{Z}_p^* is cyclic.

Every group of prime order is cyclic. Why?

Why is there no cyclic multiplicative group \mathbb{Z}_p^* , with prime p , except the trivial case \mathbb{Z}_2^* ?

Definition. A group G is called cyclic if there exists an element g such that each element in G is on the form g^χ for some integer $x.$

Theorem. If p is prime, then \mathbb{Z}_p^* is cyclic.

Every group of prime order is cyclic. Why?

Why is there no cyclic multiplicative group \mathbb{Z}_p^* , with prime p , except the trivial case \mathbb{Z}_2^* ?

Keep in mind the difference between:

- $\blacktriangleright \mathbb{Z}_{p}$ with prime order as an additive group,
- ► \mathbb{Z}_p^* with non-prime order as a multiplicative group.
- ► group G_p of prime order.