DD2448 Foundations of Cryptography Lecture 5

Douglas Wikström KTH Royal Institute of Technology dog@kth.se

February 19, 2016

DD2448 Foundations of Cryptography

February 19, 2016

Let us turn this expression into a definition.

Definition. Let X be a random variable taking values in \mathcal{X} . Then the **entropy** of X is

$$H(X) = -\sum_{x \in \mathcal{X}} \mathsf{P}_X(x) \log \mathsf{P}_X(x)$$
 .

Examples and intuition are nice, but what we need is a theorem that states that this is **exactly** the right expected length of an optimal code.

Definition. Let (X, Y) be a random variable taking values in $\mathcal{X} \times \mathcal{Y}$. We define **conditional entropy**

$$H(X|y) = -\sum_{x} \mathsf{P}_{X|Y}(x|y) \log \mathsf{P}_{X|Y}(x|y) \text{ and}$$
$$H(X|Y) = \sum_{y} \mathsf{P}_{Y}(y) H(X|y)$$

Note that H(X|y) is simply the ordinary entropy function of a random variable with probability function $P_{X|Y}(\cdot|y)$.

I

Let X be a random variable taking values in \mathcal{X} .

Upper Bound. $H(X) = E[-\log P_X(X)] \le \log |\mathcal{X}|.$

Chain Rule and Conditioning.

$$\begin{aligned} H(X, Y) &= -\sum_{x, y} \mathsf{P}_{X, Y}(x, y) \log \mathsf{P}_{X, Y}(x, y) \\ &= -\sum_{x, y} \mathsf{P}_{X, Y}(x, y) \left(\log \mathsf{P}_{Y}(y) + \log \mathsf{P}_{X|Y}(x|y) \right) \\ &= -\sum_{y} \mathsf{P}_{Y}(y) \log \mathsf{P}_{Y}(y) - \sum_{x, y} \mathsf{P}_{X, Y}(x, y) \log \mathsf{P}_{X|Y}(x|y) \\ &= H(Y) + H(X|Y) \le H(Y) + H(X) \end{aligned}$$

Elementary Number Theory

DD2448 Foundations of Cryptography

Definition. A common divisor of two integers m and n is an integer d such that $d \mid m$ and $d \mid n$.

Definition. A greatest common divisor (GCD) of two integers m and n is a common divisor d such that every common divisor d' divides d.

Definition. A common divisor of two integers m and n is an integer d such that $d \mid m$ and $d \mid n$.

Definition. A greatest common divisor (GCD) of two integers m and n is a common divisor d such that every common divisor d' divides d.

The GCD is the positive GCD.

Definition. A common divisor of two integers m and n is an integer d such that $d \mid m$ and $d \mid n$.

Definition. A greatest common divisor (GCD) of two integers m and n is a common divisor d such that every common divisor d' divides d.

- The GCD is the positive GCD.
- We denote the GCD of m and n by gcd(m, n).

• gcd(m, n) = gcd(n, m)

•
$$gcd(m, n) = gcd(m \pm n, n)$$

•
$$gcd(m, n) = gcd(m \mod n, n)$$

- gcd(m, n) = 2 gcd(m/2, n/2) if m and n are even.
- gcd(m, n) = gcd(m/2, n) if m is even and n is odd.

EUCLIDEAN(m, n)(1) while $n \neq 0$ (2) $t \leftarrow n$ (3) $n \leftarrow m \mod n$ (4) $m \leftarrow t$ (5) return m

Steins Algorithm (Binary GCD Algorithm)

```
STEIN(m, n)
(1)
        if m = 0 or n = 0 then return 0
(2)
     s \leftarrow 0
     while m and n are even
(3)
(4)
            m \leftarrow m/2, n \leftarrow n/2, s \leftarrow s+1
(5)
       while n is even
(6)
            n \leftarrow n/2
(7)
        while m \neq 0
(8)
            while m is even
(9)
                m \leftarrow m/2
(10)
        if m < n
(11)
                SWAP(m, n)
(12)
       m \leftarrow m - n
(13)
            m \leftarrow m/2
        return 2<sup>s</sup>n
(14)
```

Lemma. There exists integers a and b such that

gcd(m,n) = am + bn.

Lemma. There exists integers a and b such that

$$\gcd(m,n) = am + bn$$
 .

Proof. Let d > gcd(m, n) be the smallest positive integer on the form d = am + bn. Write m = cd + r with 0 < r < d. Then

$$d>r=m-cd=m-c(am+bn)=(1-ca)m+(-cb)n$$
 ,

a contradiction! Thus, r = 0 and $d \mid m$. Similarly, $d \mid n$.

EXTENDEDEUCLIDEAN(m, n)(1) if $m \mod n = 0$ (2) return (0, 1)(3) else (4) $(x, y) \leftarrow \text{EXTENDEDEUCLIDEAN}(n, m \mod n)$ (5) return $(y, x - y \lfloor m/n \rfloor)$

If $(x, y) \leftarrow \text{EXTENDEDEUCLIDEAN}(m, n)$ then gcd(m, n) = xm + yn.

Definition. Two integers m and n are coprime if their greatest common divisor is 1.

Fact. If a and n are coprime, then there exists a b such that $ab = 1 \mod n$.

Definition. Two integers m and n are coprime if their greatest common divisor is 1.

Fact. If a and n are coprime, then there exists a b such that $ab = 1 \mod n$.

Excercise: Why is this so?

Theorem. (Sun Tzu 400 AC) Let n_1, \ldots, n_k be positive pairwise coprime integers and let a_1, \ldots, a_k be integers. Then the equation system

 $x = a_1 \mod n_1$ $x = a_2 \mod n_2$ $x = a_3 \mod n_3$ \vdots $x = a_k \mod n_k$

has a unique solution in $\{0, \ldots, \prod_i n_i - 1\}$.

1. Set
$$N = n_1 n_2 \cdot \ldots \cdot n_k$$
.

- 2. Find r_i and s_i such that $r_i n_i + s_i \frac{N}{n_i} = 1$ (Bezout).
- 3. Note that

$$s_i \frac{N}{n_i} = 1 - r_i n_i = \begin{cases} 1 \pmod{n_i} \\ 0 \pmod{n_j} & \text{if } j \neq i \end{cases}$$

4. The solution to the equation system becomes:

$$x = \sum_{i=1}^{k} \left(s_i \frac{N}{n_i} \right) \cdot a_i$$

The set $\mathbb{Z}_n^* = \{ 0 \le a < n : gcd(a, n) = 1 \}$ forms a group, since:

- Closure. It is closed under multiplication modulo *n*.
- Associativity. For $x, y, z \in \mathbb{Z}_n^*$:

$$(xy)z = x(yz) \mod n$$
 .

• Identity. For every
$$x \in \mathbb{Z}_n^*$$
:

$$1 \cdot x = x \cdot 1 = x \; .$$

▶ **Inverse.** For every $a \in \mathbb{Z}_n^*$ exists $b \in \mathbb{Z}_n^*$ such that:

$$ab = 1 \mod n$$

Theorem. If *H* is a subgroup of a finite group *G*, then |H| divides |G|.

Proof.

- 1. Define $aH = \{ah : h \in H\}$. This gives an equivalence relation $x \approx y \Leftrightarrow x = yh \land h \in H$ on *G*.
- 2. The map $\phi_{a,b} : aH \to bH$, defined by $\phi_{a,b}(x) = ba^{-1}x$ is a bijection, so |aH| = |bH| for $a, b \in G$.

• Clearly: $\phi(p) = p - 1$ when p is prime.

- Clearly: $\phi(p) = p 1$ when p is prime.
- Similarly: $\phi(p^k) = p^k p^{k-1}$ when p is prime and k > 1.

• Clearly: $\phi(p) = p - 1$ when p is prime.

• Similarly:
$$\phi(p^k) = p^k - p^{k-1}$$
 when p is prime and $k > 1$.

• In general:
$$\phi\left(\prod_i p_i^{k_i}\right) = \prod_i \left(p_i^k - p_i^{k-1}\right).$$

• Clearly: $\phi(p) = p - 1$ when p is prime.

• Similarly: $\phi(p^k) = p^k - p^{k-1}$ when p is prime and k > 1.

• In general:
$$\phi\left(\prod_i p_i^{k_i}\right) = \prod_i \left(p_i^k - p_i^{k-1}\right).$$

Excercise: How does this follow from CRT?

Theorem. (Fermat) If $b \in \mathbb{Z}_p^*$ and p is prime, then $b^{p-1} = 1 \mod p$.

Theorem. (Euler) If $b \in \mathbb{Z}_n^*$, then $b^{\phi(n)} = 1 \mod n$.

Theorem. (Fermat) If $b \in \mathbb{Z}_p^*$ and p is prime, then $b^{p-1} = 1 \mod p$.

Theorem. (Euler) If $b \in \mathbb{Z}_n^*$, then $b^{\phi(n)} = 1 \mod n$.

Proof. Note that $|\mathbb{Z}_n^*| = \phi(n)$. *b* generates a subgroup $\langle b \rangle$ of \mathbb{Z}_n^* , so $|\langle b \rangle|$ divides $\phi(n)$ and $b^{\phi(n)} = 1 \mod n$.

Definition. A group G is called **cyclic** if there exists an element g such that each element in G is on the form g^x for some integer x.

Theorem. If p is prime, then \mathbb{Z}_p^* is cyclic.

Definition. A group G is called **cyclic** if there exists an element g such that each element in G is on the form g^x for some integer x.

Theorem. If p is prime, then \mathbb{Z}_p^* is cyclic.

Every group of prime order is cyclic. Why?

Definition. A group G is called **cyclic** if there exists an element g such that each element in G is on the form g^x for some integer x.

Theorem. If p is prime, then \mathbb{Z}_p^* is cyclic.

Every group of prime order is cyclic. Why?

Why is there no cyclic multiplicative group \mathbb{Z}_p^* , with prime p, except the trivial case \mathbb{Z}_2^* ?

Definition. A group G is called **cyclic** if there exists an element g such that each element in G is on the form g^x for some integer x.

Theorem. If p is prime, then \mathbb{Z}_p^* is cyclic.

Every group of prime order is cyclic. Why?

Why is there no cyclic multiplicative group \mathbb{Z}_{p}^{*} , with prime p, except the trivial case \mathbb{Z}_{2}^{*} ?

Keep in mind the difference between:

- \mathbb{Z}_p with prime order as an additive group,
- \mathbb{Z}_{p}^{*} with non-prime order as a multiplicative group.
- group G_p of prime order.