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Let us turn this expression into a definition.

Definition. Let X be a random variable taking values in X'. Then
the entropy of X is

H(X) ==Y Px (x)logPx (x) .
xeX

Examples and intuition are nice, but what we need is a theorem
that states that this is exactly the right expected length of an
optimal code.
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Conditional Entropy

Definition. Let (X, Y) be a random variable taking values in
X x Y. We define conditional entropy

H(Xly) = ZPX|Y (x|y)logP x|y (x|y) and

H(X|Y) = ZPy(y (Xly)

Note that H(X]y) is simply the ordinary entropy function of a
random variable with probability function P x|y (- |y).
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Properties of Entropy

Let X be a random variable taking values in X.

Upper Bound. H(X) = E[—logPx (X)] < log | X]|.
Chain Rule and Conditioning.

H(X,Y)==) Pxy(x,y)logPx.y (x,y)

== Px.y (x,y) (logPy (y) +logPx}y (x]y))
== Py(y)logPy (y) = > _Px.y (x,y)logPxjy (x|y)

= H(Y) + H(X|Y) < H(Y) + H(X)
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Elementary Number
Theory
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Greatest Common Divisors

Definition. A common divisor of two integers m and n is an
integer d such that d | m and d | n.

Definition. A greatest common divisor (GCD) of two integers m
and n is a common divisor d such that every common divisor d’
divides d.

DD2448 Foundations of Cryptography February 19, 2016



Greatest Common Divisors

Definition. A common divisor of two integers m and n is an
integer d such that d | m and d | n.

Definition. A greatest common divisor (GCD) of two integers m
and n is a common divisor d such that every common divisor d’
divides d.

» The GCD is the positive GCD.
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Greatest Common Divisors

Definition. A common divisor of two integers m and n is an
integer d such that d | m and d | n.

Definition. A greatest common divisor (GCD) of two integers m
and n is a common divisor d such that every common divisor d’
divides d.

» The GCD is the positive GCD.

» We denote the GCD of m and n by ged(m, n).
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v

ged(m, n) = ged(n, m)

v

ged(m, n) = ged(m + n, n)

v

ged(m, n) = ged(m mod n, n)

v

ged(m, n) = 2ged(m/2,n/2) if m and n are even.

v

ged(m, n) = ged(m/2, n) if mis even and n is odd.
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Euclidean Algorithm

EUCLIDEAN(m, n)
(1) whilen#0

(2) t<n
(3) n<— mmod n
(4) m<—t
(5) return m
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Steins Algorithm (Binary GCD Algorithm)

STEIN(m, n)
(1)  if m=0or n=0 then return 0

(2) s«0

(3)  while m and n are even
(4) m<+< m/2, n<n/2, s+ s+1
(5)  while n is even

(6) n<n/2

(7)  whilem#0

(8) while m is even

(9) m <— m/2

(10) if m<n

(11) SwWAP(m, n)

(12) m< m-—n

(13) m < m/2
(14) return 2°n
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Bezout's Lemma

Lemma. There exists integers a and b such that

ged(m, n) = am+ bn .
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Bezout's Lemma

Lemma. There exists integers a and b such that
ged(m, n) = am+ bn .
Proof. Let d > gcd(m, n) be the smallest positive integer on the
form d = am + bn. Write m = cd + r with 0 < r < d. Then
d>r=m—cd=m-—c(am+ bn) = (1 — ca)ym+ (—cb)n ,

a contradiction! Thus, r =0 and d | m. Similarly, d | n.
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Extended Euclidean Algorithm (Recursive Version)

EXTENDEDEUCLIDEAN(m, n)
(1) fmmodn=0

(2) return (0,1)

(3) else

(4) (x,y) < EXTENDEDEUCLIDEAN(n, m mod n)
(5) return (y,x — y|m/n])

If (x,y) < EXTENDEDEUCLIDEAN(m, n) then
ged(m, n) = xm + yn.
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Coprimality (Relative Primality)

Definition. Two integers m and n are coprime if their greatest
common divisor is 1.

Fact. If a and n are coprime, then there exists a b such that
ab =1 mod n.
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Coprimality (Relative Primality)

Definition. Two integers m and n are coprime if their greatest
common divisor is 1.

Fact. If a and n are coprime, then there exists a b such that
ab =1 mod n.

Excercise: Why is this so?

DD2448 Foundations of Cryptography February 19, 2016



Chinese Remainder Theorem (CRT)

Theorem. (Sun Tzu 400 AC) Let ny,..., ng be positive pairwise
coprime integers and let ai, ..., a, be integers. Then the equation
system
= ai;modm
= a>mod n
= a3z mod n3
X = ag mod ng

has a unique solution in {0,...,[]; ni — 1}.
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Constructive Proof of CRT

1. Set N=niny-...- ng.
2. Find r; and s; such that rin; + s,-# =1 (Bezout).
3. Note that
N [ 1 (mod nj)
Sy = 1 ””’_{ 0 (modny) ifj#i

4. The solution to the equation system becomes:
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The Multiplicative Group

Theset Z = {0 <a<n : gcd(a,n) =1} forms a group, since:
» Closure. It is closed under multiplication modulo n.
» Associativity. For x,y,z € Z}:
(xy)z = x(yz) mod n .

> ldentity. For every x € Z7:

> Inverse. For every a € Z}, exists b € Z}, such that:

ab=1modn .
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Lagrange's Theorem

Theorem. If H is a subgroup of a finite group G,
then |H| divides |G].

Proof.
1. Define aH = {ah: h € H}. This gives an equivalence relation
x~y<x=yhANheHonG.
2. The map ¢ap: aH — bH, defined by ¢, p(x) = ba~lx is a
bijection, so |aH| = |bH| for a,b € G.
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Euler’s Phi-Function (Totient Function)

Definition. Euler's Phi-function ¢(n) counts the number of
integers 0 < a < n relatively prime to n.
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Euler’s Phi-Function (Totient Function)

Definition. Euler's Phi-function ¢(n) counts the number of
integers 0 < a < n relatively prime to n.

» Clearly: ¢(p) = p — 1 when p is prime.
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Euler’s Phi-Function (Totient Function)

Definition. Euler's Phi-function ¢(n) counts the number of
integers 0 < a < n relatively prime to n.

» Clearly: ¢(p) = p — 1 when p is prime.

» Similarly: ¢(p¥) = p¥ — p¥~1 when p is prime and k > 1.
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Euler’s Phi-Function (Totient Function)

Definition. Euler's Phi-function ¢(n) counts the number of
integers 0 < a < n relatively prime to n.

» Clearly: ¢(p) = p — 1 when p is prime.

» Similarly: ¢(p¥) = p¥ — p¥~1 when p is prime and k > 1.

II; (Plk - p;(_:l)-

> In general: ¢ (H, p;"')
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Euler’s Phi-Function (Totient Function)

Definition. Euler's Phi-function ¢(n) counts the number of
integers 0 < a < n relatively prime to n.

» Clearly: ¢(p) = p — 1 when p is prime.

» Similarly: ¢(p¥) = p¥ — p¥~1 when p is prime and k > 1.
> In general: ¢ (H, p;"‘) = Hi (Plk — p;(_1>-

Excercise: How does this follow from CRT?
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Fermat's and Euler's Theorems

Theorem. (Fermat) If b € Zj, and p is prime, then
bP~t =1 mod p.

Theorem. (Euler) If b € Z, then b*(") =1 mod n.
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Fermat's and Euler's Theorems

Theorem. (Fermat) If b € Zj, and p is prime, then
bP~t =1 mod p.

Theorem. (Euler) If b € Z, then b*(") =1 mod n.

Proof. Note that |Z}| = ¢(n). b generates a subgroup (b) of Z%,
so |(b)| divides ¢(n) and b?(" =1 mod n.
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Multiplicative Group of a Prime Order Field

Definition. A group G is called cyclic if there exists an element g
such that each element in G is on the form g* for some integer x.

Theorem. If p is prime, then Zj, is cyclic.
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Multiplicative Group of a Prime Order Field

Definition. A group G is called cyclic if there exists an element g
such that each element in G is on the form g* for some integer x.

Theorem. If p is prime, then Zj, is cyclic.

Every group of prime order is cyclic. Why?
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Multiplicative Group of a Prime Order Field

Definition. A group G is called cyclic if there exists an element g
such that each element in G is on the form g* for some integer x.

Theorem. If p is prime, then Zj, is cyclic.

Every group of prime order is cyclic. Why?

Why is there no cyclic multiplicative group Z%, with prime p,
except the trivial case Z37
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Multiplicative Group of a Prime Order Field

Definition. A group G is called cyclic if there exists an element g
such that each element in G is on the form g* for some integer x.

Theorem. If p is prime, then Zj, is cyclic.

Every group of prime order is cyclic. Why?

Why is there no cyclic multiplicative group Z%, with prime p,
except the trivial case Z37
Keep in mind the difference between:

» Zp with prime order as an additive group,

» Z, with non-prime order as a multiplicative group.

> group G, of prime order.
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